96 research outputs found

    A large-sample investigation into uncertain climate change impacts on high flows across Great Britain

    Full text link
    Climate change may significantly increase flood risk globally, but there are large uncertainties in both future climatic changes and how these propagate into changing river flows. Here, the impact of climate change on the magnitude and frequency of high flows is analysed for Great Britain (GB) to provide the first spatially consistent GB projections to include both climate ensembles and hydrological model parameter uncertainties. We use the latest high-resolution (12 km) regional climate model ensemble from the UK Climate Projections (UKCP18). These projections are based on a perturbed-physics ensemble of 12 regional climate model simulations and allow exploration of climate model uncertainty beyond the variability caused by the use of different models. We model 346 larger (>144 km2) catchments across GB using the DECIPHeR hydrological modelling framework. Generally, results indicated an increase in the magnitude and frequency of high flows (Q10, Q1, and annual maximum) along the western coast of GB in the future (2050–2075), with increases in annual maximum flows of up to 65 % for western Scotland. In contrast, median flows (Q50) were projected to decrease across GB. Even when using an ensemble based on a single regional climate model (RCM) structure, all flow projections contained large uncertainties. While the RCM parameters were the largest source of uncertainty overall, hydrological modelling uncertainties were considerable in eastern and south-eastern England. Regional variations in flow projections were found to relate to (i) differences in climatic change and (ii) catchment conditions during the baseline period as characterised by the runoff coefficient (mean discharge divided by mean precipitation). Importantly, increased heavy-precipitation events (defined by an increase in 99th percentile precipitation) did not always result in increased flood flows for catchments with low runoff coefficients, highlighting the varying factors leading to changes in high flows. These results provide a national overview of climate change impacts on high flows across GB, which will inform climate change adaptation, and highlight the impact of hydrological model parameter uncertainties when modelling climate change impact on high flows

    Large-sample hydrology: recent progress, guidelines for new datasets and grand challenges

    Get PDF
    Large-sample hydrology (LSH) relies on data from large sets (tens to thousands) of catchments to go beyond individual case studies and derive robust conclusions on hydrological processes and models. Numerous LSH datasets have recently been released, covering a wide range of regions and relying on increasingly diverse data sources to characterize catchment behaviour. These datasets offer novel opportunities, yet they are also limited by their lack of comparability, uncertainty estimates and characterization of human impacts. This article (i) underscores the key role of LSH datasets in hydrological studies, (ii) provides a review of currently available LSH datasets, (iii) highlights current limitations of LSH datasets and (iv) proposes guidelines and coordinated actions to overcome these limitations. These guidelines and actions aim to standardize and automatize the creation of LSH datasets worldwide, and to enhance the reproducibility and comparability of hydrological studies

    A snow and glacier hydrological model for large catchments – case study for the Naryn River, central Asia

    Get PDF
    In this paper we implement a degree day snowmelt and glacier melt model in the Dynamic fluxEs and ConnectIvity for Predictions of HydRology (DECIPHeR) model. The purpose is to develop a hydrological model that can be applied to large glaciated and snow-fed catchments yet is computationally efficient enough to include model uncertainty in streamflow predictions. The model is evaluated by simulating monthly discharge at six gauging stations in the Naryn River catchment (57 833 km2) in central Asia over the period 1951 to a variable end date between 1980 and 1995 depending on the availability of discharge observations. The spatial distribution of simulated snow cover is validated against MODIS weekly snow extent for the years 2001–2007. Discharge is calibrated by selecting parameter sets using Latin hypercube sampling and assessing the model performance using six evaluation metrics. The model shows good performance in simulating monthly discharge for the calibration period (NSE is 0.74&lt;NSE&lt;0.87) and validation period (0.7&lt;NSE&lt;0.9), where the range of NSE values represents the 5th–95th percentile prediction limits across the gauging stations. The exception is the Uch-Kurgan station, which exhibits a reduction in model performance during the validation period attributed to commissioning of the Toktogul reservoir in 1975 which impacted the observations. The model reproduces the spatial extent in seasonal snow cover well when evaluated against MODIS snow extent; 86 % of the snow extent is captured (mean 2001–2007) for the median ensemble member of the best 0.5 % calibration simulations. We establish the present-day contributions of glacier melt, snowmelt and rainfall to the total annual runoff and the timing of when these components dominate river flow. The model predicts well the observed increase in discharge during the spring (April–May) associated with the onset of snow melting and peak discharge during the summer (June, July and August) associated with glacier melting. Snow melting is the largest component of the annual runoff (89 %), followed by the rainfall (9 %) and the glacier melt component (2 %), where the values refer to the 50th percentile estimates at the catchment outlet gauging station Uch-Kurgan. In August, glacier melting can contribute up to 66 % of the total runoff at the highly glacierized Naryn headwater sub-catchment. The glaciated area predicted by the best 0.5 % calibration simulations overlaps the Landsat observations for the late 1990s and mid-2000s. Despite good predictions for discharge, the model produces a large range of estimates for the glaciated area (680–1196 km2) (5th–95th percentile limits) at the end of the simulation period. To constrain these estimates further, additional observations such as glacier mass balance, snow depth or snow extent should be used directly to constrain model simulations.</p

    A large-sample investigation into uncertain climate change impacts on high flows across Great Britain

    Get PDF
    Climate change may significantly increase flood risk globally, but there are large uncertainties in both future climatic changes and how these propagate into changing river flows. Here, the impact of climate change on the magnitude and frequency of high flows is analysed for Great Britain (GB) to provide the first spatially consistent GB projections to include both climate ensembles and hydrological model parameter uncertainties. We use the latest high-resolution (12 km) regional climate model ensemble from the UK Climate Projections (UKCP18). These projections are based on a perturbed-physics ensemble of 12 regional climate model simulations and allow exploration of climate model uncertainty beyond the variability caused by the use of different models. We model 346 larger (>144 km2) catchments across GB using the DECIPHeR hydrological modelling framework. Generally, results indicated an increase in the magnitude and frequency of high flows (Q10, Q1, and annual maximum) along the western coast of GB in the future (2050–2075), with increases in annual maximum flows of up to 65 % for western Scotland. In contrast, median flows (Q50) were projected to decrease across GB. Even when using an ensemble based on a single regional climate model (RCM) structure, all flow projections contained large uncertainties. While the RCM parameters were the largest source of uncertainty overall, hydrological modelling uncertainties were considerable in eastern and south-eastern England. Regional variations in flow projections were found to relate to (i) differences in climatic change and (ii) catchment conditions during the baseline period as characterised by the runoff coefficient (mean discharge divided by mean precipitation). Importantly, increased heavy-precipitation events (defined by an increase in 99th percentile precipitation) did not always result in increased flood flows for catchments with low runoff coefficients, highlighting the varying factors leading to changes in high flows. These results provide a national overview of climate change impacts on high flows across GB, which will inform climate change adaptation, and highlight the impact of hydrological model parameter uncertainties when modelling climate change impact on high flows

    Strategic analysis of the drought resilience of water supply systems

    Get PDF
    Severe droughts can result in shortages of water supplies, with widespread social and economic consequences. Here we use a coupled simulation model to assess the reliability of public water supplies in England, in the context of changing scenarios of water demand, water regulation and climate change. The coupled simulation model combines climate simulations, a national-scale hydrological model and a national-scale water resource systems model to demonstrate how extreme meteorological droughts translate into hydrological droughts and water shortages for water users. We use this model to explore the effectiveness of strategic water resource options that are being planned in England to secure water supplies to most of England's population up to a drought return period of 1 in 500 years. We conclude that it is possible to achieve a 1-in-500-years standard in locations where strategic resource options are used, while also reducing water abstraction to restore the aquatic environment. However, the target will be easier to achieve if effective steps are also taken to reduce water demand. This article is part of the Royal Society Science+ meeting issue ‘Drought risk in the Anthropocene’

    On doing hydrology with dragons:Realizing the value of perceptual models and knowledge accumulation

    Get PDF
    Our ability to fully and reliably observe and simulate the terrestrial hydrologic cycle is limited, and in-depth experimental studies cover only a tiny fraction of our landscape. On medieval maps, unexplored regions were shown as images of dragons—displaying a fear of the unknown. With time, cartographers dared to leave such areas blank, thus inviting explorations of what lay beyond the edge of current knowledge. In hydrology, we are still in a phase where maps of variables more likely contain hydrologic dragons than blank areas, which would acknowledge a lack of knowledge. In which regions is our ability to extrapolate well developed, and where is it poor? Where are available data sets informative, and where are they just poor approximations of likely system properties? How do we best identify and acknowledge these gaps to better understand and reduce the uncertainty in characterizing hydrologic systems? The accumulation of knowledge has been postulated as a fundamental mark of scientific advancement. In hydrology, we lack an effective strategy for knowledge accumulation as a community, and insufficiently focus on highlighting knowledge gaps where they exist. We propose two strategies to rectify these deficiencies. Firstly, the use of open and shared perceptual models to develop, debate, and test hypotheses. Secondly, improved knowledge accumulation in hydrology through a stronger focus on knowledge extraction and integration from available peer-reviewed articles. The latter should include metadata to tag journal articles complemented by a common hydro-meteorological database that would enable searching, organizing and analyzing previous studies in a hydrologically meaningful manner. This article is categorized under: Engineering Water &gt; Planning Water Science of Water &gt; Hydrological Processes Science of Water &gt; Methods.</p

    How is Baseflow Index (BFI) impacted by water resource management practices?

    Get PDF
    Water resource management (WRM) practices, such as abstractions and discharges, may impact baseflow. Here the CAMELS-GB large-sample hydrology dataset is used to assess the impacts of such practices on baseflow index (BFI) using statistical models of 429 catchments from Great Britain. Two complementary modelling schemes, multiple linear regression (LR) and machine learning (random forests, RF), are used to investigate the relationship between BFI and two sets of covariates (natural covariates only and a combined set of natural and WRM covariates). The LR and RF models show good agreement between explanatory covariates. In all models, the extent of fractured aquifers, clay soils, non-aquifers, and crop cover in catchments, catchment topography and aridity are significant or important natural covariates in explaining BFI. When WRM terms are included, groundwater abstraction is significant or the most important WRM covariate in both modelling schemes and discharge to rivers is also identified as significant or influential, although natural covariates still provide the main explanatory power of the models. Surface water abstraction is a significant covariate in the LR model but of only minor importance in the RF model. Reservoir storage covariates are not significant or are unimportant in both the LR and RF models for this large-sample analysis. Inclusion of WRM terms improves the performance of some models in specific catchments. The LR models of high BFI catchments with relatively high levels of groundwater abstraction show the greatest improvements, and there is some evidence of improvement in LR models of catchments with moderate to high discharges. However, there is no evidence that the inclusion of the WRM covariates improves the performance of LR models for catchments with high surface water abstraction or that they improve the performance of the RF models. These observations are used to formulate a conceptual framework for baseflow generation that incorporates WRM practices. It is recommended that information on WRM, particularly groundwater abstraction, should be included where possible in future large-sample hydrological data sets and in the analysis and prediction of BFI and other measures of baseflow

    Process-based modelling to evaluate simulated groundwater levels and frequencies in a Chalk catchment in south-western England

    Get PDF
    Abstract. Chalk aquifers are an important source of drinking water in the UK. Due to their properties, they are particularly vulnerable to groundwater-related hazards like floods and droughts. Understanding and predicting groundwater levels is therefore important for effective and safe water management. Chalk is known for its high porosity and, due to its dissolvability, exposed to karstification and strong subsurface heterogeneity. To cope with the karstic heterogeneity and limited data availability, specialised modelling approaches are required that balance model complexity and data availability. In this study, we present a novel approach to evaluate simulated groundwater level frequencies derived from a semi-distributed karst model that represents subsurface heterogeneity by distribution functions. Simulated groundwater storages are transferred into groundwater levels using evidence from different observations wells. Using a percentile approach we can assess the number of days exceeding or falling below selected groundwater level percentiles. Firstly, we evaluate the performance of the model when simulating groundwater level time series using a spilt sample test and parameter identifiability analysis. Secondly, we apply a split sample test to the simulated groundwater level percentiles to explore the performance in predicting groundwater level exceedances. We show that the model provides robust simulations of discharge and groundwater levels at three observation wells at a test site in a chalk-dominated catchment in south-western England. The second split sample test also indicates that the percentile approach is able to reliably predict groundwater level exceedances across all considered timescales up to their 75th percentile. However, when looking at the 90th percentile, it only provides acceptable predictions for long time periods and it fails when the 95th percentile of groundwater exceedance levels is considered. By modifying the historic forcings of our model according to expected future climate changes, we create simple climate scenarios and we show that the projected climate changes may lead to generally lower groundwater levels and a reduction of exceedances of high groundwater level percentiles. </jats:p
    corecore