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Abstract. Chalk aquifers are an important source of drinking
water in the UK. Due to their properties, they are particularly
vulnerable to groundwater-related hazards like floods and
droughts. Understanding and predicting groundwater levels
is therefore important for effective and safe water manage-
ment. Chalk is known for its high porosity and, due to its dis-
solvability, exposed to karstification and strong subsurface
heterogeneity. To cope with the karstic heterogeneity and
limited data availability, specialised modelling approaches
are required that balance model complexity and data avail-
ability. In this study, we present a novel approach to eval-
uate simulated groundwater level frequencies derived from
a semi-distributed karst model that represents subsurface het-
erogeneity by distribution functions. Simulated groundwater
storages are transferred into groundwater levels using evi-
dence from different observations wells. Using a percentile
approach we can assess the number of days exceeding or
falling below selected groundwater level percentiles. Firstly,
we evaluate the performance of the model when simulat-
ing groundwater level time series using a spilt sample test
and parameter identifiability analysis. Secondly, we apply
a split sample test to the simulated groundwater level per-
centiles to explore the performance in predicting groundwa-
ter level exceedances. We show that the model provides ro-
bust simulations of discharge and groundwater levels at three
observation wells at a test site in a chalk-dominated catch-
ment in south-western England. The second split sample test
also indicates that the percentile approach is able to reliably
predict groundwater level exceedances across all considered
timescales up to their 75th percentile. However, when look-

ing at the 90th percentile, it only provides acceptable predic-
tions for long time periods and it fails when the 95th per-
centile of groundwater exceedance levels is considered. By
modifying the historic forcings of our model according to ex-
pected future climate changes, we create simple climate sce-
narios and we show that the projected climate changes may
lead to generally lower groundwater levels and a reduction of
exceedances of high groundwater level percentiles.

1 Introduction

The English Chalk aquifer region extends over large parts of
south-western England and is an important water resource
aquifer, providing about 55 % of all groundwater-abstracted
drinking water in the UK (Lloyd, 1993). As a carbonate rock
the English Chalk is exposed to karstification, i.e. chemical
weathering (Ford and Williams, 2007), resulting in particular
surface and subsurface features such as dolines, river sinks,
caves and conduits (Goldscheider and Drew, 2007; Gutiérrez
et al., 2014; Stevanovic, 2015). Consequently, karstification
also produces strong hydrological subsurface heterogeneity
(Bakalowicz, 2005). The interplay between diffuse and con-
centrated infiltration and recharge processes, as well as fast
flow through karstic conduits and diffuse matrix flow, re-
sults in complex flow and storage dynamics (Hartmann et al.,
2014a). Even though Chalk has a tendency for less intense
karstification, for instance compared to limestone, its karstic
behaviour has increasingly been recognised (Maurice et al.,
2006, 2012; Fitzpatrick, 2011).
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Apart from the high water quality, favourable infiltration
and storage dynamics which make chalk aquifers a preferred
source of drinking water in the UK, their karstic behaviour
also increases the risk of fast drainage of their storages by
karstic conduit flow during dry years. This also increases the
risk of groundwater flooding as a result of fast responses
of groundwater levels to intense rainfalls due to fast infil-
tration and groundwater recharge processes. Groundwater
flooding, i.e. when groundwater levels emerge at the ground
surface due to intense rainfall (Macdonald et al., 2008), tend
to be more severe in areas of permeable outcrop like the En-
glish Chalk (Macdonald et al., 2012) as also experienced re-
peatedly in other karst areas in Europe (Parise, 2003, 2010;
Bonacci et al., 2006; Jourde et al., 2007; Gutiérrez, 2010;
Naughton et al., 2012; Parise et al., 2015). Groundwater
drought indices tend to be more related to recharge condi-
tions in Cretaceous Chalk aquifers than in granular aquifers
(Bloomfield and Marchant, 2013). Due to the fast transfer of
water from the soil surface to the main groundwater system,
chalk aquifers tend to be more sensitive to external changes,
as for instance shown by Jackson et al. (2015), who found
significant groundwater level declines in 4 out of 7 chalk
boreholes in a UK-wide study using historic groundwater
level observations.

Climate projections suggest that the UK will experience
increasing temperatures, with less rainfall during the summer
but warmer and wetter winters (Jenkins et al., 2008). This
may stress these groundwater resources and increase the risk
of groundwater droughts and potentially winter groundwater
flooding. For those reasons, assessment of potential future
changes in groundwater dynamics, concerning groundwater
droughts, median groundwater levels as well as groundwater
flooding is broadly recommended and is the subject of cur-
rent research around the world (Naughton et al., 2012, 2015;
Jackson et al., 2015; von Freyberg et al., 2015; Jimenez-
Martinez et al., 2016; Moutahir et al., 2017; Perrone and
Jasechko, 2017).

However, present approaches mostly rely on statistical
distribution functions to express groundwater dynamics and
groundwater level exceedance probabilities (e.g. Bloomfield
et al., 2015; Kumar et al.,, 2016) and it is questionable
whether the shapes of these distribution functions remain
the same when climate or land use change. Physics-based
hydrological simulation models that incorporate hydrologi-
cal processes in a relatively high detail can be considered to
potentially provide the most reliable predictions, especially
under a changing environment. However, there are consid-
erable limitations in obtaining the necessary information to
estimate the structure and the model parameters, especially
for subsurface processes, and this inevitably increases mod-
elling uncertainties (Perrin et al., 2003; Beven, 2006).

The definition of appropriate model structures and param-
eters from limited information becomes problematic when
modelling karst aquifers. In order to achieve acceptable sim-
ulation performance they have to include representations of
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karstic heterogeneity in their structures. Distributed karst
modelling approaches are able to simulate groundwater lev-
els on a spatial grid but their data requirements mostly limit
them to theoretical studies (e.g. Birk et al., 2006; Reimann
etal.,2011) or well explored study sites (e.g. Hill et al., 2010;
Jackson et al., 2011; Oehlmann et al., 2015). Lumped karst
modelling approaches consider physical processes on the
scale of the entire karst system. Although they are strongly
simplified, they can include karst peculiarities such as differ-
ent conduit and matrix systems (Maloszewski et al., 2002;
Geyer et al., 2008; Fleury et al., 2009). Since they are easy
to implement and do not require spatial information, they
are widely used in karst modelling (Juki¢ and Denié-Jukié,
2009). Simple rainfall-run-off models with more than 5—
6 parameters are often assumed to end up in equifinality
(Wheater et al., 1986; Jakeman and Hornberger, 1993; Ye
et al., 1997); i.e. their parameters lose their identifiability
(Wagener et al., 2002; Beven, 2006). For that reason, re-
cent research took advantage of auxiliary data, such as water
quality data or tracer experiments (Hartmann et al., 2013b;
Oechlmann et al., 2015). These studies showed that adding
such information allows the necessary model parameters to
be identified, therefore enabling the model to reflect the rel-
evant processes.

Up to now, most lumped karst models have been ap-
plied for rainfall-run-off simulations. Groundwater levels
were simulated in quite a few studies (Adams et al., 2010;
Ladouche et al., 2014; Jimenez-Martinez et al., 2016) but
mostly relied on very simple representations of karst hydro-
logical processes and disregarding the scale discrepancy be-
tween borehole (point scale) and modelling domain (catch-
ment scale) at which they were applied.

In this study, we present a novel approach to predict and
evaluate groundwater level frequencies in chalk-dominated
catchments. It uses a previously developed semi-distributed
process-based model (VarKarst, Hartmann et al., 2013b) that
we further developed to simulate groundwater levels. To as-
sess groundwater level frequencies we formulated a per-
centile of a groundwater-based approach that quantifies the
probability of exceeding or falling below selected groundwa-
ter levels. We exemplify and evaluate our new approach on
a Chalk catchment in south-western England that had to cope
with several flooding events in the past. Finally we apply the
approach to simple climate scenarios that we create by mod-
ifying our historic model forcings to show how changes in
evapotranspiration and precipitation can affect groundwater
level frequencies.

2 Study site and data availability

Located in West Dorset in the south-west of England the
river Frome drains a rural catchment with an area approx-
imately 414 km? (Fig. 1). The catchment elevation varies
from over 200 ma.s.l. (a.s.l.) in the north-west to sea level in

www.nat-hazards-earth-syst-sci.net/18/445/2018/
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Figure 1. Location map with an overview of the Frome catchment.

the south-east. The topography is very flat with a mean slope
of 3.9% and a mean height of approximately 111 ma.s.l.
The climate can be defined as oceanic with mild winters
and warm summers (Dorset County Council, 2009). How-
den (2006) characterised the Frome as highly groundwa-
ter dominated. During the summer months, discharge of the
Frome is typically very low, hardly reaching 5m?s~! (Brun-
ner et al., 2010). The geology is predominated by the Cre-
taceous Chalk outcrop which underlays around 65 % of the
catchment. The headwaters of the Frome include outcrops of
the Upper Greensand, often overlain by the rather imperme-
able Zig Zag Chalk (Howden, 2006). The middle reaches of
the Frome traverse the Cretaceous Chalk outcrop followed
by Palaeogene strata in the lower reaches, eventually drain-
ing into Poole Harbour. The major aquifer Chalk appears
mainly unconfined. However, in the lower reaches it is over-
lain by Palaeogene strata, resulting in confined aquifer con-
ditions. The region around the Frome catchment is known
for the highest density of solution features in the UK (Ed-
monds, 1983) which can be mainly observed in the inter-
fluve between the Frome and Piddle (Adams et al., 2003).
Loams over chalk, shallow silts, deep loamy, sandy and shal-
low clays constitute the primary types of soils occurring in
the study area (Brunner et al., 2010). The soils of the upper
parts of the catchment are mainly shallow and well drained
(NRA, 1995). In the middle and lower reaches the soils are
becoming more sandy and acidic due to waterlogged condi-
tions caused by either groundwater or winter flooding (NRA,
1995; Brunner et al., 2010). Due to its geological setting, the
area is prone to groundwater flooding. It has occurred several
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times at different locations, for example in Maiden Newton
during winter 2000/2001 (Environment Agency, 2012) and in
Winterbourne Abbas during summer 2012 (Bennett, 2013).

3 Methodology

In order to consider karstic process behaviour in our simu-
lations we use the process-based karst model VarKarst in-
troduced by Hartmann et al. (2013b). VarKarst includes the
karstic heterogeneity and the complex behaviour of karst pro-
cesses using distribution functions that represent the variabil-
ity of soil, epikarst and groundwater and was applied suc-
cessfully at different karst regions over Europe (Hartmann
et al., 2013a, 2014b, 2016). We use a simple linear relation-
ship that takes into account effective porosities and base level
of the groundwater wells (see Eq. 1) enabling the model to
simulate groundwater levels based on the groundwater stor-
age in VarKarst. Finally, a newly developed evaluation ap-
proach is used by transferring simulated groundwater level
time series into groundwater level frequency distributions
and comparing them to observed behaviour at a number of
monitored wells.

3.1 The model

The VarKarst model operates on a daily time step. Similarly
to other karst models, it distinguishes between three subrou-
tines representing the soil system, the epikarst system and
the groundwater system but it also includes their spatial vari-
ability, which is expressed by distribution functions that are

Nat. Hazards Earth Syst. Sci., 18, 445-461, 2018
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Figure 2. The VarKarst model structure.

applied to a set of N =15 model compartments (Fig. 2).
Pareto functions as distribution functions have shown to per-
form best in previous work (Hartmann et al., 2013a, b), as
well as the number of 15 model compartments (Hartmann
et al., 2012). Including the spatial variability of subsurface
properties in this manner, the VarKarst model can be seen as
a hybrid or semi-distributed model. All relevant model pa-
rameters are provided in Table 1. For a detailed description
of VarKarst see the appendix or Hartmann et al. (2013b).

The model was driven by two input time series (precip-
itation and potential evapotranspiration, PET), and the 13
variable model parameters (see Table 2) were calibrated and
evaluated by four observed time series (discharge and the
three boreholes,; see Sect. 3.3). Similarly to Kuczera and
Mroczkowski (1998) we use a simple linear homogeneous
relationship which translates the groundwater storage (mm)
into a groundwater level (ma.s.l.):

Vow.,i (1)

SRALEAS NN 1
1000 x pow M

how (1) =

The related parameters are hgy (m) and pgw (-). hgyw is the
difference between the base of the contributing groundwater
storage (that is simulated by the model) and the base of the
well that is used for calibration and evaluation. pgy repre-
sents the average porosity of the rock that is intersected by
the well.

3.2 Data availability

The daily discharge data for gauge East Stoke were ob-
tained from the Centre for Ecology & Hydrology (CEH,
http://nrfa.ceh.ac.uk/) and dates back to the 1960s. The bore-
hole data were provided by the Environment Agency (EA)
and obtained via the University of Bristol. The total data
used for modelling in this study can be seen in Table 1. The
three boreholes (Ashton Farm, Ridgeway and Black House)
comprised high-resolution raw data which had been collected
at 15 min intervals. For further analysis, the data were ag-
gregated to daily time averages. The potential evapotran-
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spiration has a strong annual cycle. Since most recent data
from 2009 to 2012 was missing, representative PET years
were calculated on the basis of the last 50 years. Climate
projections were obtained from the UK Climate Projections
User Interface (UKCP09 UL, http://ukclimateprojections-ui.
metoffice.gov.uk/). For more information about the UKCP
see Murphy et al. (2009).

3.3 Model calibration and evaluation

We use the shuffled complex evolution method (SCEM) for
our calibration, which is based on the Metropolis—Hastings
algorithm (Metropolis et al., 1953; Hastings, 1970) and the
shuffled complex evolution algorithm (SCE, Duan et al.,
1992). The Metropolis—Hastings algorithm uses a formal
likelihood measure and calculates the ratio of the posterior
probability densities of a “candidate” parameter set that is
drawn from a proposal distribution and a given parameter
set. If this ratio is larger than or equal to a number randomly
drawn from a uniform distribution between O and 1, the can-
didate parameter set is accepted. This procedure is repeated
for a large number of iterations. If the proposal distribution
is properly chosen, the Markov chain will rapidly explore the
parameter space and it will converge to the target distribu-
tion of interest (Vrugt et al., 2003). In the SCEM algorithm,
candidate parameter sets are drawn from a self-adapting pro-
posal distribution for each of a predefined number of clusters.
Again a random number [0, 1] is used to accept or discard
candidate parameter sets. The SCEM algorithm was applied
in default mode using the Gelman—Rubin convergence crite-
ria (Vrugt et al., 2003). In our study, we use the Kling—Gupta
efficiency (KGE; Gupta et al., 2009) as the objective func-
tion, which can be regarded as an informal likelihood mea-
sure or more generally as a monotonically increasing per-
formance metric of model skill (Smith et al., 2008). It was
chosen by trial and error, comparing the simulation perfor-
mances during calibration and validation obtained with dif-
ferent objective functions (RMSE and others). We found that
we obtain the most robust results with the KGE. To decide
whether to accept or discard a parameter set, we compare the
KGEs of the candidate and the given parameter sets. This
procedure was already applied in various studies (Engeland
et al., 2005; Blasone et al., 2008; McMillan and Clark, 2009)
and is possible if the error functions monotonically increase
with improved performance. We achieved this in the SCEM
algorithm by defining KGE as

KGE = —\/(r DX+ (@—- D2+ (B-1)? 2
Os Ms

a=—; f=—,
Oo Mo

with r as the linear correlation coefficient between simula-
tions and observations, and 030, and s/, as the means and
SDs of simulations and observations respectively.

The posterior parameter distributions derived from SCEM
provide information about the identifiability of the parame-
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Table 1. All available data used in the study.

Parameter Station Source  Period of time Resolution ~ Unit
Precipitation Sydling St. Nicolas (44006) CEH 01.01.2000-31.12.2012  daily mmd~!
Discharge East Stoke (44001) CEH 01.01.2000-31.12.2012  daily m3s!
Potential evapotranspiration ~ Catchment Cut East Stoke CEH 01.01.2000-31.12.2008  daily mmd !
Groundwater levels Ashton Farm, Ridgeway, Black House =~ EA 01.01.2003-31.12.2012  daily ma.s.l.
Climate delta values Grid Box Nr. 1698 (25 x 25 km) UKCP  2070-2099 annual °C, %

Table 2. Model parameters, descriptions, ranges and optimised values.

Parameter ~ Description Unit Ranges Weighting  Optimised values
Lower Upper
Vinean, S Mean soil storage capacity mm 1000 2500 2015.6
Vinean, E Mean epikarst storage capacity mm 1000 2500 1011.7
Kmean, E Epikarst mean storage coefficient d 0.1 2.5 0.7246
Kc Conduit storage coefficient d 1 100 38.722
afsep Recharge separation variability constant 0.1 5 1.1864
agw Groundwater variability constant - 1 10 5.9966
asg Soil/epikarst depth variability constant - 0.1 6 1.8928
PGW, A Ashton Farm groundwater level porosity parameter - 0.001 0.5 0.0069
AhGw, A Ashton Farm groundwater level offset parameter m 0 150 64.167
PGW, R Ridgeway groundwater level porosity parameter - 0.001 0.5 0.0016
Ahgw, R Ridgeway groundwater level offset parameter m 0 150 48.718
PGW, B Black House groundwater level porosity parameter - 0.001 0.5 0.0032
AhGgw, B Black House groundwater level offset parameter m 0 150 78.448
KGEq Model performance for discharge - 0 1 0.2 0.73/0.58*
KGEGw,A  Model performance for groundwater level at Ashton Farm - 0 1 0.4 0.94/0.80*
KGEgw,r  Model performance for groundwater level at Ridgeway - 0 1 0.2 0.86/-*
KGEgw,g  Model performance for groundwater level at Black House =~ — 0 1 0.2 0.83/0.74 *

* Calibration/validation.

ters. The more they differ from a uniform posterior distribu-
tion the higher the identifiability of a model parameter. We
present different calibration distributions to show the use of
auxiliary data for parameter identifiability.

Parameter ranges were chosen following previous expe-
rience with the VarKarst model (Hartmann et al., 2013a,
b, 2014b, 2016). Besides the quantitative measure of effi-
ciency, a split sample test (Klemes, 1986) was carried out.
Our data covered precipitation, evapotranspiration, discharge
and groundwater levels from 2000 to the end of 2012. We cal-
ibrated the model for the period 2008-2012 and used the pe-
riod 2003-2007 for validation. We chose this reversed order
to be able to include the information on three boreholes that
was only available for 2008-2012. Three years were used
as warm-up for each of calibration and validation. During
calibration, the most appropriate of the N = 15 groundwa-
ter compartments that represent each groundwater well was
found by choosing the compartment with the best correlation
to the groundwater dynamics of the well.

This procedure was repeated for each well and each Monte
Carlo run and finally provided the three model compartment

www.nat-hazards-earth-syst-sci.net/18/445/2018/

numbers that produce the best simulations of groundwater
levels at the three operation wells and the best catchment dis-
charge according to our selected weighting scheme. During
calibration, we used a weighting scheme which was found
by trial and error, as we stepwise added borehole data to our
discharge observations. Discharge and the borehole at Ash-
ton Farm were both weighted as one-third as Ashton farm
is located in the lower parts within the catchment, while the
other two boreholes were located at higher elevation at the
catchment’s edge and weighted as one-sixth each. In order to
explore the contribution of the different observed discharge
and groundwater time series during the calibration, we use
SCEM to derive the posterior parameter distributions using
(1) the final weighting scheme, (2) only discharge, (3) only
Ashton farm, and (4) only the other two boreholes (equally
weighted). Posterior parameter distributions are plotted as
cumulative distributions. The more parameters that show
sensitivity, the more information is contained in the selected
calibration scheme.

Nat. Hazards Earth Syst. Sci., 18, 445-461, 2018
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Figure 3. Schematic description of the percentile approach.

3.4 The percentile approach

Even though the VarKarst model includes spatial variability
of system properties by its distribution functions, its semi-
distributed structure does not allow for an explicit considera-
tion of the locations of groundwater wells. Its model structure
allowed for an acceptable and stable simulation of ground-
water level time series of the three wells (see Sect. 4.1),
but for groundwater management, frequency distributions of
groundwater levels calculated over the timescale of inter-
est are commonly preferred. For that reason we introduced
a groundwater level percentile-based approach. Other than
Westerberg et al. (2016), who transferred discharge time se-
ries into signatures derived from flow duration curves, we
calibrate directly with the discharge and groundwater time
series in order to evaluate the performance of our approach
for selected time periods (see evaluation below). Similarly to
the calculation of standardised precipitation or groundwater
indices (e.g. Lloyd-Hughes and Saunders, 2002; Bloomfield
and Marchant, 2013), we create cumulative frequency dis-
tributions of observed groundwater levels and the simulated
groundwater levels from the previously evaluated model.
Now, the exceedance probability or percentile for a selected
observed groundwater level (for instance, the groundwater
level above which groundwater flooding can be expected)
can be used to define the corresponding simulated groundwa-
ter level, and the number of days exceeding or falling below
the chosen groundwater level can directly be extracted from
the frequency distributions (Fig. 3). Note that this procedure
is performed after the model is calibrated and validated with
KGE as described in the previous subsection. We avoided
a calibration directly to the flow percentiles, as temporal in-
formation would have been removed, which would have re-
sulted in a lower prediction performance of the model.

As the approach is meant to be applied in combination
with climate change scenarios, we perform an evaluation on
multiple timescales and flow percentiles. We assess the 5th,
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10th, 25th, 50th, 75th, 90th and 95th percentiles on tempo-
ral resolutions of years, seasons, months, weeks and days.
The deviation between modelled and observed number of ex-
ceedance days of these different percentiles is quantified by
the mean absolute deviation (MAD) between simulated ex-
ceedances (SE) and observed exceedances (OE):

MAD,, = mean (abs (D" SEi. — >_OEi.)) [d. ()

where x stands for the timescale (years, months, weeks, days)
and p is the respective percentile. To better compare the de-
viations for different percentiles we normalise the MAD to
a percentage of mean absolute deviation (PAD) with the total
number of days of the chosen timescale:

MAD,

PAD, = x 100 [%], C))

Px

where dp, is a normalising constant standing for the to-
tal number of days of the respective timescale and per-
centile. For example, if we take the timescale of months and
the 75th percentile of exceedances we get a d p, of (100-
75) % x(365.25/12) days. To evaluate the prediction perfor-
mance of the approach, percentiles are derived from the daily
data of the calibration period and then applied to the valida-
tion period, similarly to the split sample test in Sect. 3.3. In
this way we are able to evaluate our model over different
thresholds and in terms of temporal resolution.

3.5 Establishment of simple climate scenarios and
assessment of groundwater level frequency
distributions

Given the model performance assessment above, we use our
approach to assess future changes of groundwater level fre-
quencies at our study site. We derive projections of future
precipitation and potential evapotranspiration by manipulat-
ing our observed “baseline” climate data. We extract distri-
butional samples of percentage changes of precipitation and

www.nat-hazards-earth-syst-sci.net/18/445/2018/
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Figure 4. Modelled discharge (m3s~1) and groundwater levels (ma.s.l.) at the boreholes Ashton Farm, Ridgeway and Black House.

evaporation from the UK probabilistic projections of climate
change over land (UKCP09) for (1) a low-emission scenario
and (2) a high-emission scenario for the time period of 2070-
2099. This enables us to capture, in a pragmatic and com-
putationally efficient approach, for the two emission scenar-
ios the general range of changes for the most pertinent vari-
ables that we think will most impact changes to monthly sea-
sonal GW responses. We focus on projected median delta
values for change in mean temperature (°C) and precipita-
tion (%), as well as the respective 25th and 75th percentile
from the probabilistic projections, and apply them to our in-
put data. For our model input we transfer projected temper-
atures into evapotranspiration via the Thornthwaite equation
(Thornthwaite, 1948). In this way, we obtain 3 x 3 projections
(3 x precipitation and 3 x evapotranspiration) for each of the
emission scenarios that also address the uncertainty associ-
ated with the projections. The resulting simulations will pro-
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vide an estimate of possible future changes of groundwater
level frequencies for the two emission scenarios including an
assessment of their uncertainty.

4 Results
4.1 Model calibration and evaluation

Table 2 shows the optimised parameter values as well as the
model performance. The simulation of the discharge shows
KGE values of 0.73 and 0.58 in the calibration and vali-
dation periods respectively. The borehole simulations show
high KGE values and only slight deteriorations in the valida-
tion period. The parameters are located well within their pre-
defined ranges. Mean soil storage Vinean, s and mean epikarst
storage Vipean, £ are 2015.6 and 1011.7 mm respectively. The
porosity parameter at Ashton Farm is the highest, followed
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Figure 5. Cumulative parameter distributions (blue) of all model parameters; strong deviation from the 1: 1 (dark grey) indicates good

identifiability.

by the borehole at Black House. Ridgeway shows the small-
est porosity value. For Ashton Farm and Blackhouse the cali-
bration chose the groundwater storage compartment 7, while
for Ridgeway it chose the compartment number 8.

Figure 4 plots the observations against simulations for the
calibration and validation periods. Modelled discharge gen-
erally matches the seasonal behaviour of the observations.
However, some low-flow peaks are not depicted well in the
simulation. When looking at the groundwater levels, the sim-
ulation of Ashton Farm appears to be most adequate. How-
ever, there are considerable periods when differences from
the observations can be found for all wells. Simulations at
Ridgeway and Black House show moderate performance in
capturing peak groundwater levels. Notably, the simulation
at Black House is slightly better in the validation period. The
cumulative parameter distributions derived by SCEM indi-
cate that the model parameters were easily identifiable when
we use all available data (Fig. 5), while some parameters re-
main difficult to identify when only parts of the available data
were used for calibration. Here identifiability of parameters
is simply the extent to which the cumulative parameter dis-
tributions span the sampled parameter limits, where highly
constrained parameter distributions are classed as identifi-
able. For instance, when only discharge was used for cal-
ibration (green lines), the parameters related to groundwa-
ter (porosity pgw and groundwater level offset Ah) happen
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to be unidentifiable. In addition, the groundwater parame-
ters are only identifiable when their respective time series
is considered (i.e. the yellow and blue lines at pgw, o and
Ahgw, A). In turn, the epikarst storage Vimean, E 1 not iden-
tifiable when only the groundwater well data are used (yel-
low and red lines). We also note, as we would expect, that
the final cumulative parameter distributions occur in different
parts of the parameter space depending on the combination
of performance metrics from different observations.

4.2 The percentile approach

When simulated peak values of groundwater levels are com-
pared to the observations, we find a rather moderate agree-
ment. Using the percentile approach we find different thresh-
olds that exceed our selected groundwater level percentiles.
This is elaborated for the 90th percentile of simulated and
observed groundwater levels of Ashton farm (Fig. 6).

Table 3 shows the mean observed and modelled ex-
ceedances of all selected thresholds (the 5th, 10th, 25th, 50th,
75th, 90th and 95th percentiles) at all temporal resolutions
in the validation period. By comparing matches in the num-
ber days of exceedance we evaluate our model with different
percentiles and timescales. The left value is the mean abso-
lute deviation (MAD) and the right value is the percentage of
absolute deviation (PAD). We can see that the higher the per-
centile, the larger the deviation between observed and mod-
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Figure 6. Ilustration of the percentile approach. Time series of the observed (grey dots) and modelled (green line) groundwater levels at
Ashton Farm. The dotted lines represent the respective 90th percentile.

Table 3. Deviations of simulated to observed exceedances of different percentiles in the validation period (borehole: Ashton Farm). The left
value is the mean absolute deviation MAD (d), the right value is the deviation percentage PAD (%).

Percentiles
Time period 5 10 25 50 75 90 95
5 years 5.00/0.29  30.00/1.83  38.00/2.77 16.00/1.75 1.26/5.04  19.00/10.40 90.00/98.56
Years 2.60/0.75 13.60/4.14 14.40/5.26 21.20/11.61 4.33/17.30 19.80/54.21 26.00/142.37
Years—seasons  0.65/0.75 4.10/4.99 3.60/5.26 6.90/15.11  6.74/26.94 6.45/70.64 6.50/142.37
Months 0.22/0.75 1.37/4.99 1.20/5.26 2.73/17.96  7.94/31.76 2.58/84.87 2.23/146.75
Weeks 0.05/0.74 0.33/5.27 0.27/5.18 0.61/17.36  7.82/31.27 0.58/83.56 0.54/153.10
Days 0.01/0.75 0.05/5.35 0.04/5.26 0.09/17.96  7.94/31.76 0.08/84.88 0.08/159.91

elled exceedances. The same is true for the PAD when mov-
ing from lower to higher temporal resolutions. The MAD de-
creases with higher temporal resolution.

4.3 Impact of simulated climate changes on
groundwater level distributions

The results of applying the two climate projections to the
model can be found at Table 4 and in Fig. 7. They dis-
play the mean model outputs (Qsim, AET) and mean ex-
ceedances per year, calculated on the basis of our modelled
time series. Both emission scenarios (low and high) lead
to increased modelled actual evapotranspiration and to de-
creased discharge simulations. In addition, both emission
scenarios show a substantial reduction in exceedances of
high percentiles. We also find that the standard error of the
exceedances and non-exceedances of high-emission scenario
tends to be higher than the standard error of the low-emission
scenario.
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5 Discussion
5.1 Reliability of the simulations

A decrease in the simulation performance in the validation
period is normally to be expected because there is always
a tendency to compensate for structural limitations and ob-
servational uncertainties during the calibration. The low de-
crease in model performance from 11 % (groundwater pre-
diction at Black House, KGEgw, ) to 21 % (discharge pre-
diction, KGEq) during the validation period indicates a cer-
tain robustness of the calibrated parameters and is com-
parable to split sample tests in other studies (e.g. Parajka
et al., 2007; Perrin et al., 2001), although we have to ac-
knowledge that for other applications a higher degree of ro-
bustness may be required. In addition, it is corroborated by
their generally mainly high identifiability derived by SCEM
for the final calibration scheme that used all four available
observed discharge and groundwater level time series. By
applying the shuffled complex evolution Metropolis algo-
rithm and stepwise increasing the calibration data (only dis-
charge, only groundwater, all together), we show that dis-
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Table 4. Model output and (non-)exceedances of percentiles in the reference period and the two scenarios (borehole: Ashton Farm, time

period 2070-2099).

Scenario Qsim AET 5th 10th 25th 50th 75th 90th 95th

mm a*1 mm a71 non exc a*1 non exc a*1 non exc a*1 exc a*1 exc a*1 exc a71 exc a*1
Reference 534 590 17.6 41.3 95.6 172.9 79.7 37.7 25.2
Low 433 681 314 62.8 123.9 132.9 57.6 19.5 10.9
High 343 718 57.0 92.3 165.3 94.9 37.5 10.9 6.1

charge data alone, as well as groundwater data alone, do
not provide enough information to identify all of our model
parameters, as the posteriors of some of the model param-
eters remain close to a uniform distribution. This is simi-
lar to the work of Schoups and Vrugt (2010), who found
unidentifiable parameter values with their models calibrat-
ing only against discharge. The different calibration schemes
visualised in the cumulative parameter distributions show
that initially unidentifiable parameters become identifiable
when the related time series is considered. Using all infor-
mation, all model parameters are identifiable, which is in
accordance with preceding research that showed the useful-
ness of multi-objective approaches. For instance, Kuczera
and Mroczkowski (1998) demonstrated that a combination
of groundwater and discharge observations can reduce pa-
rameter uncertainty. As we were mostly focussing on the dif-
ference among the calibration steps with increasing data, the
use of KGE as an informal likelihood measure seems justifi-
able.
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A look at the parameter values reveals an adequate reflec-
tion of reality. However, Vinean, s and Vipean, E are quite high
considering that initial ranges for these parameters were 0—
250/0-500 mm (Hartmann et al., 2013a, c). As previous stud-
ies took place in fairly dry catchments, the ranges were ex-
tended substantially to deal with the wetter climate in south-
ern England. A high asg indicates high variability in soil and
epikarst thicknesses, favouring lateral karstic flow concentra-
tion (Ford and Williams, 2007). Butler et al. (2012) notes that
the unsaturated zone of the Chalk is highly variable, ranging
from almost zero near the rivers to over 100 m in interfluves.

Additionally, the mean epikarst storage coefficient
K mean, E 1s quite low, indicating fast water transport from the
epikarst to the groundwater storage which is in accordance
to other studies (e.g. Aquilina et al., 2006). The value of pa-
rameter a fsep indicates that a significant part of the recharge
is diffuse. A moderately high conduit storage coefficient K¢
and a high agw indicate that there is a significant contribu-
tion of slow pathways by the matrix system. A rather low
value that is sensitive to K¢ was found when calibrating only
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by discharge operations, indicating some interactions of K¢
with other model parameters (Saltelli et al., 2008). This is
in accordance with the findings by Jones and Cooper (1998)
as well as by Reeves (1979), who reported 30 and 10-20 %
of the recharge occurring through (macro-) fissures in Chalk
catchments. Although groundwater flow in the chalk is dom-
inated by the matrix, given antecedent wet conditions, frac-
ture flow can increase significantly (Lee et al., 2006; Ireson
and Butler, 2011; Butler et al., 2012). Overall, a split-sample
test, parameter identifiability analysis, realistic values of pa-
rameters and plausible simulation results provide a strong in-
dication of reliable model functioning.

5.2 Performance of the percentile approach

Based on the idea of the standardised precipitation or ground-
water indices (Lloyd-Hughes and Saunders, 2002; Bloom-
field and Marchant, 2013) our percentile approach permits
the performance of the model to be improved to reflect ob-
served groundwater level exceedances. It yields acceptable
performance for years to days up to the 90th percentile.
A reduction of precision with the timescale is obvious but
in an acceptable order of magnitude when the validation
period is considered. Although deviations are considerable
both in the calibration and validation periods, they are sta-
ble demonstrating certain robustness but also the limitations
of our approach. Although the variable model structure of
the VarKarst model was shown to provide more realistic re-
sults than commonly used lumped models (Hartmann et al.,
2013Db) it still simplifies a karst system’s natural complex-
ity. This can be seen in the simulated time series at Ashton
Farm and Black House, which indicate an overestimation of
high levels and an underestimation of low levels. The reason
for this behaviour might be due to the modelling assump-
tion of a constant vertical porosity, despite the knowledge
that there can be a strongly non-linear relation between chalk
transmissivity and depth. Several studies acknowledge that
hydraulic conductivity in the Chalk follows a non-linear de-
creasing trend with depth (Allen et al., 1997; Wheater et al.,
2007; Butler et al., 2009). This is mainly attributed to the
decrease in fractures because of the increasing overburden
and absence of water level fluctuations (Williams et al., 2006;
Butler et al., 2012). Hydraulic conductivities in the Chalk can
span several orders of magnitude (Butler et al., 2009) and are
particularly enhanced at the zone of water table fluctuations
(Williams et al., 2006). In addition, cross-flows occurring in
the aquifer can lead to complicated system responses in the
Chalk (Butler et al., 2009). For the sake of a parsimonious
model structure, these characteristics were omitted in this
study but their future consideration could help to improve
the simulations if information about the depth profile of per-
meability is available. A decrease in performance was also
found for standardised indices that use probability distribu-
tions instead of a simulation model (Vicente-Serrano et al.,
2012; Nuifez et al., 2014; Van Lanen et al., 2016). To im-
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prove the approach’s reliability for higher groundwater level
percentiles, a model calibration that is more focussed on the
high groundwater level percentiles may be a promising direc-
tion. A consideration of the time spans above the 90th per-
centile will allow for a better simulation quality. This could
be further evaluated by using different percentile weighting
schemes and stepwise increasing the weight on the target per-
centile.

5.3 Applicability and transferability of our approach

We prepared two scenarios by manipulating our input data
using probabilistic projections of annual changes in precip-
itation and potential evaporation at 2070-2099 for a low-
and a high-emission scenario. This may neglect some of the
changes on climate patterns predicted by climate projections
but it is based on local and real meteorological values of
the reference period, therefore avoiding problems that arise
when historic and climate projection data show pronounced
mismatches during their overlapping periods. Our results re-
vealed that both scenarios lead to fewer exceedances over
higher percentiles and more non-exceedances of lower per-
centiles, indicating a higher risk of groundwater drought at
our study site. However, one problem that arises from our
approach is that we do not consider changes in the sea-
sonal patterns of our input variable, for example the in-
crease in winter precipitation. If this increase was consid-
ered, the results would probably yield more exceedances
of higher percentiles, as for instance found by Jimenez-
Martinez et al. (2016). The purpose of the simple climate
scenarios was to provide an application example of the new
methodology, which is rather hypothetical considering the
large uncertainties of current climate projections. We believe
that our nine realisations are sufficient to show that different
possible future changes have a non-linear impact on ground-
water level frequencies. Although quite simplistic, our results
are qualitatively in accordance with previous studies indi-
cating increased occurrence of droughts in the UK (Burke
et al., 2010; Prudhomme et al., 2014). The risk of drought
occurrences might increase depending on the magnitude of
change in evapotranspiration. However, more research and
the application of more elaborated scenarios are necessary
to completely understand the consequences of the change in
groundwater frequency patterns in the UK chalk regions.

As the VarKarst model is a process-based model that
includes the relevant characteristics of karst systems over
range of climatic settings (Hartmann et al., 2013b), our ap-
proach can to some extent be used to assess future changes
of groundwater level distributions and also be applied in
other regions. This may bring some advantage concerning
approaches that used transfer functions (Jimenez-Martinez
et al., 2016) or regression models (Adams et al., 2010) for
estimating groundwater levels if enough data for model cali-
bration and evaluation are available.
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As has been noted by Cobby et al. (2009), the likelihood
and depth of groundwater inundations is one of the ma-
jor challenges for future research of groundwater flooding.
Since it is a lumped approach it may provide, after Butler
et al. (2012), “a good indication of the likelihood of ground-
water flooding, but do[es] not indicate where the flooding
will take place”. A spatial determination of the groundwater
table such as that in Upton and Jackson (2011) would be pos-
sible but only in catchments where the borehole network is
extensive. Thereby, the possibility to model several boreholes
with one single calibration, due to compartment structure in
VarKarst, might be also an advantage. Butler et al. (2012)
noted that the parameterisation of the unsaturated zone is
a major difficulty in the Chalk region. Since this study also
struggles with the porosity, future work should take a closer
look at this subject.

6 Conclusions

We used an existing process-based lumped karst model to
simulate groundwater levels in a chalk catchment in south-
western England. Groundwater levels were simulated by
translating the modelled groundwater storage into ground-
water levels with a simple linear relationship. To evaluate our
approach we analysed the agreement of observed and simu-
lated groundwater level exceedances for different percentiles.
Finally, a simple scenario analysis was undertaken to inves-
tigate the potential future changes of groundwater level fre-
quencies that affect the risk of groundwater flooding as well
as the risk of groundwater droughts. The model performance
for discharge and the groundwater levels was satisfying and
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showed the general adequacy of the model for simulating
groundwater levels in the chalk. It also revealed shortcom-
ings concerning higher groundwater levels. This was corrob-
orated by the percentile approach that showed a robust per-
formance up to the 90th percentile. A scenario analysis us-
ing UKCP projections on expected regional climate changes
showed that expected changes may lead to an increased oc-
currence of low groundwater levels due to increasing actual
evaporation. Overall, our study shows that semi-distributed
process-based modelling can be a valuable tool for simulat-
ing and predicting groundwater frequencies in Chalk regions
where information is too limited for the application of dis-
tributed models. Here, a thorough model evaluation is essen-
tial for obtaining reliable and consistent results. In order to
obtain more reliable results we recommend collecting more
data about the hydrogeological properties of our study site
to improve the structure of our model regarding the porosity
and the unsaturated zone. In addition, longer time series and
an adapted calibration approach which, in particular, empha-
sises the > 90th percentiles of groundwater levels could sig-
nificantly improve our simulations. In addition we propose
applying the method to other catchments to test the transfer-
ability of our approach and to quantify the variability of cli-
mate change impacts over a wide range of Chalk catchments
across the UK.

Data availability. The sources of all underlying data are described
in Table 1. All precipitation, discharge and potential evaporation
data are freely available from the CEH website. Groundwater level
observations and climate delta values can be accessed via request at
EA and UKCP, respectively.
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Appendix A

Within the VarKarst model, the parameter Vipean, s (mm) and
the distribution coefficient asg (—) define the variation of soil
storage capacities across the N model compartments. They
are used to calculate the soil storage capacity Vs ; (mm) for
every compartment i by Egs. (3) and (4) in Table A1. We
apply the same distribution coefficient asg when we derive
the epikarst storage distribution by the mean epikarst depth
Vimean, E (mm) (Egs. 6 and 7 in Table A1). We determine ac-
tual evapotranspiration from each soil compartment. Eqy; is
calculated by reducing potential evapotranspiration using the
Thornthwaite equation (Thornthwaite, 1948) and the soil sat-
uration deficit (Eq. 1 in Table Al). Surface run-off is found
by the excess of soil and epikarst storage of the previous
model compartment (Eq. 2 in Table Al). With surface run-
off and actual evapotranspiration, the stored water volume
at each soil compartment Vs,; ; (mm) can be calculated by
simply applying water balance.

The recharge from the soil to the epikarst Rgp;; (mm) is
calculated by the excess of the soil storage (Eq. 5 in Ta-
ble Al), while the epikarst outflow follows a linear storage
assumption (Eqs. 8 and 9 in Table A1). Again, water balance
allows the stored water Vgp;; (mm) to be determined at each
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time step ¢ and each epikarst compartment i. The down-
ward flux from the epikarst considers diffuse (Rgifr;, mm)
and concentrated groundwater recharge (Rconc,i, mm) com-
ponent that are found by a variable separation factor fc; (-
) and a distribution coefficient af (=) (Eqgs. 10, 11 and 12
in Table A1). The diffuse component recharges the ground-
water compartments beneath the respective epikarst layers
(i =1...N —1). The concentrated component flows laterally
to compartment i = N and therefore recharges the conduit
system.

Similarly to the epikarst compartment, variable ground-
water storage coefficients Kgw ; (d) are calculated (Eq. 15
in Table A1) and applied to calculate the discharges of the
matrix system (Eq. 13 in Table A1) and the conduit system
(Eq. 14 in Table A1), which together sum up to the entire dis-
charge of the system (Eq. 15 in Table A1). Knowing ground-
water recharge and groundwater discharge for each model
compartment i again allows the stored volume of water to
be determined within the groundwater compartment Vgw ;
at time step ¢, which is used to simulate the groundwater lev-
els (Eq. 1 in Sect. 3.1).

Table A1. Parameters, descriptions and equations solved in the VarKarst model.

Model routine ~ Variable Description Equation Unit Equation
Soil Ejyct,i (1) Actual evapotranspiration = Epot(?) minfVsoi (t)JrP(t):r,QS“’me" ©.Vs.] mmd~! (1)
Osurf,i+1(t)  Surface flow to the next model compartment = max [ Vipi,i (1) + Repi,i (1) — Vs ;, 0] mmd~!  (2)
asg
Vinax, S Maximum soil storage capacity = Vinean, $2 asg+ mm 3)
-\ dS
Vs.i Soil storage distribution = Vinax, S (IN) S mm “)
Repi, i (1) Recharge to the epikarst = max [ Vo, (1) + P(t) + OSurtace,i (1) — Eact,i ) — Vs,i.] mmd~!  (5)
. . 4 (e,
Epikarst Viax, E Maximum epikarst storage capacity = Vimean, E2 asg mm (6)
. a
VE,i Epikarst storage distribution = Vimax, E(lﬁ S mm 7
OEpii (1) Outflow of the epikarst = mm[VEPi‘i(t)+REPi';'((é?‘+QS“'f““C'j(t)’VE‘i] At mmd~!  (8)
. as
Kg,i Epikarst storage coefficient = Kmax, E(N_TH—]) SE d )
Rgifr,i () Diffuse recharge = fc,i QEpi,i (1) mmd~! (10
Reonc,i (1) Concentrated recharge = — fc,) Qrpii (1) mmd=! (1)
-\ A fs
fc,i Recharge separation factor = (lﬁ) foep - (12)
Groundwater Ocgw,i (1) Groundwater contributions of the matrix = W mmd~! (13)
o . min[VGw,N(l)-%-Z,N:l Reonc,i (1), Verit, OF] 1
Ocw,N() Groundwater contribution of the conduit system = KC At mmd (14)
. —ag
KGw,i Variable groundwater storage coefficient =Kc N_T"H A d (15)
Omain () Discharge = %fo:l Ocw,i () 157! (16)
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