49 research outputs found
The 1/N expansion of colored tensor models in arbitrary dimension
In this paper we extend the 1/N expansion introduced in [1] to group field
theories in arbitrary dimension and prove that only graphs corresponding to
spheres S^D contribute to the leading order in the large N limit.Comment: 4 pages, 3 figure
(p,q)-Deformations and (p,q)-Vector Coherent States of the Jaynes-Cummings Model in the Rotating Wave Approximation
Classes of (p,q)-deformations of the Jaynes-Cummings model in the rotating
wave approximation are considered. Diagonalization of the Hamiltonian is
performed exactly, leading to useful spectral decompositions of a series of
relevant operators. The latter include ladder operators acting between adjacent
energy eigenstates within two separate infinite discrete towers, except for a
singleton state. These ladder operators allow for the construction of
(p,q)-deformed vector coherent states. Using (p,q)-arithmetics, explicit and
exact solutions to the associated moment problem are displayed, providing new
classes of coherent states for such models. Finally, in the limit of decoupled
spin sectors, our analysis translates into (p,q)-deformations of the
supersymmetric harmonic oscillator, such that the two supersymmetric sectors
get intertwined through the action of the ladder operators as well as in the
associated coherent states.Comment: 1+25 pages, no figure
Effective Hamiltonian Constraint from Group Field Theory
Spinfoam models provide a covariant formulation of the dynamics of loop
quantum gravity. They are non-perturbatively defined in the group field theory
(GFT) framework: the GFT partition function defines the sum of spinfoam
transition amplitudes over all possible (discretized) geometries and
topologies. The issue remains, however, of explicitly relating the specific
form of the group field theory action and the canonical Hamiltonian constraint.
Here, we suggest an avenue for addressing this issue. Our strategy is to expand
group field theories around non-trivial classical solutions and to interpret
the induced quadratic kinematical term as defining a Hamiltonian constraint on
the group field and thus on spin network wave functions. We apply our procedure
to Boulatov group field theory for 3d Riemannian gravity. Finally, we discuss
the relevance of understanding the spectrum of this Hamiltonian operator for
the renormalization of group field theories.Comment: 14 page
Simple model for quantum general relativity from loop quantum gravity
New progress in loop gravity has lead to a simple model of `general-covariant
quantum field theory'. I sum up the definition of the model in self-contained
form, in terms accessible to those outside the subfield. I emphasize its
formulation as a generalized topological quantum field theory with an infinite
number of degrees of freedom, and its relation to lattice theory. I list the
indications supporting the conjecture that the model is related to general
relativity and UV finite.Comment: 8 pages, 3 figure
Topological Graph Polynomials in Colored Group Field Theory
In this paper we analyze the open Feynman graphs of the Colored Group Field
Theory introduced in [arXiv:0907.2582]. We define the boundary graph
\cG_{\partial} of an open graph \cG and prove it is a cellular complex.
Using this structure we generalize the topological (Bollobas-Riordan) Tutte
polynomials associated to (ribbon) graphs to topological polynomials adapted to
Colored Group Field Theory graphs in arbitrary dimension
Operator Spin Foam Models
The goal of this paper is to introduce a systematic approach to spin foams.
We define operator spin foams, that is foams labelled by group representations
and operators, as the main tool. An equivalence relation we impose in the set
of the operator spin foams allows to split the faces and the edges of the
foams. The consistency with that relation requires introduction of the
(familiar for the BF theory) face amplitude. The operator spin foam models are
defined quite generally. Imposing a maximal symmetry leads to a family we call
natural operator spin foam models. This symmetry, combined with demanding
consistency with splitting the edges, determines a complete characterization of
a general natural model. It can be obtained by applying arbitrary (quantum)
constraints on an arbitrary BF spin foam model. In particular, imposing
suitable constraints on Spin(4) BF spin foam model is exactly the way we tend
to view 4d quantum gravity, starting with the BC model and continuing with the
EPRL or FK models. That makes our framework directly applicable to those
models. Specifically, our operator spin foam framework can be translated into
the language of spin foams and partition functions. We discuss the examples: BF
spin foam model, the BC model, and the model obtained by application of our
framework to the EPRL intertwiners.Comment: 19 pages, 11 figures, RevTex4.
Feynman diagrammatic approach to spin foams
"The Spin Foams for People Without the 3d/4d Imagination" could be an
alternative title of our work. We derive spin foams from operator spin network
diagrams} we introduce. Our diagrams are the spin network analogy of the
Feynman diagrams. Their framework is compatible with the framework of Loop
Quantum Gravity. For every operator spin network diagram we construct a
corresponding operator spin foam. Admitting all the spin networks of LQG and
all possible diagrams leads to a clearly defined large class of operator spin
foams. In this way our framework provides a proposal for a class of 2-cell
complexes that should be used in the spin foam theories of LQG. Within this
class, our diagrams are just equivalent to the spin foams. The advantage,
however, in the diagram framework is, that it is self contained, all the
amplitudes can be calculated directly from the diagrams without explicit
visualization of the corresponding spin foams. The spin network diagram
operators and amplitudes are consistently defined on their own. Each diagram
encodes all the combinatorial information. We illustrate applications of our
diagrams: we introduce a diagram definition of Rovelli's surface amplitudes as
well as of the canonical transition amplitudes. Importantly, our operator spin
network diagrams are defined in a sufficiently general way to accommodate all
the versions of the EPRL or the FK model, as well as other possible models. The
diagrams are also compatible with the structure of the LQG Hamiltonian
operators, what is an additional advantage. Finally, a scheme for a complete
definition of a spin foam theory by declaring a set of interaction vertices
emerges from the examples presented at the end of the paper.Comment: 36 pages, 23 figure
Classical Setting and Effective Dynamics for Spinfoam Cosmology
We explore how to extract effective dynamics from loop quantum gravity and
spinfoams truncated to a finite fixed graph, with the hope of modeling
symmetry-reduced gravitational systems. We particularize our study to the
2-vertex graph with N links. We describe the canonical data using the recent
formulation of the phase space in terms of spinors, and implement a
symmetry-reduction to the homogeneous and isotropic sector. From the canonical
point of view, we construct a consistent Hamiltonian for the model and discuss
its relation with Friedmann-Robertson-Walker cosmologies. Then, we analyze the
dynamics from the spinfoam approach. We compute exactly the transition
amplitude between initial and final coherent spin networks states with support
on the 2-vertex graph, for the choice of the simplest two-complex (with a
single space-time vertex). The transition amplitude verifies an exact
differential equation that agrees with the Hamiltonian constructed previously.
Thus, in our simple setting we clarify the link between the canonical and the
covariant formalisms.Comment: 38 pages, v2: Link with discretized loop quantum gravity made
explicit and emphasize
Unified -deformation of one-parametric q-deformed oscillator algebras
We define a generalized -deformed oscillator
algebra and study the number of its characteristics. We describe the structure
function of deformation, analyze the classification of irreducible
representations and discuss the asymptotic spectrum behaviour of the
Hamiltonian. For a special choice of the deformation parameters we construct
the deformed oscillator with discrete spectrum of its "quantized coordinate"
operator. We establish its connection with the (generalized) discrete Hermite I
polynomials