49 research outputs found

    The 1/N expansion of colored tensor models in arbitrary dimension

    Full text link
    In this paper we extend the 1/N expansion introduced in [1] to group field theories in arbitrary dimension and prove that only graphs corresponding to spheres S^D contribute to the leading order in the large N limit.Comment: 4 pages, 3 figure

    (p,q)-Deformations and (p,q)-Vector Coherent States of the Jaynes-Cummings Model in the Rotating Wave Approximation

    Get PDF
    Classes of (p,q)-deformations of the Jaynes-Cummings model in the rotating wave approximation are considered. Diagonalization of the Hamiltonian is performed exactly, leading to useful spectral decompositions of a series of relevant operators. The latter include ladder operators acting between adjacent energy eigenstates within two separate infinite discrete towers, except for a singleton state. These ladder operators allow for the construction of (p,q)-deformed vector coherent states. Using (p,q)-arithmetics, explicit and exact solutions to the associated moment problem are displayed, providing new classes of coherent states for such models. Finally, in the limit of decoupled spin sectors, our analysis translates into (p,q)-deformations of the supersymmetric harmonic oscillator, such that the two supersymmetric sectors get intertwined through the action of the ladder operators as well as in the associated coherent states.Comment: 1+25 pages, no figure

    Effective Hamiltonian Constraint from Group Field Theory

    Full text link
    Spinfoam models provide a covariant formulation of the dynamics of loop quantum gravity. They are non-perturbatively defined in the group field theory (GFT) framework: the GFT partition function defines the sum of spinfoam transition amplitudes over all possible (discretized) geometries and topologies. The issue remains, however, of explicitly relating the specific form of the group field theory action and the canonical Hamiltonian constraint. Here, we suggest an avenue for addressing this issue. Our strategy is to expand group field theories around non-trivial classical solutions and to interpret the induced quadratic kinematical term as defining a Hamiltonian constraint on the group field and thus on spin network wave functions. We apply our procedure to Boulatov group field theory for 3d Riemannian gravity. Finally, we discuss the relevance of understanding the spectrum of this Hamiltonian operator for the renormalization of group field theories.Comment: 14 page

    Simple model for quantum general relativity from loop quantum gravity

    Full text link
    New progress in loop gravity has lead to a simple model of `general-covariant quantum field theory'. I sum up the definition of the model in self-contained form, in terms accessible to those outside the subfield. I emphasize its formulation as a generalized topological quantum field theory with an infinite number of degrees of freedom, and its relation to lattice theory. I list the indications supporting the conjecture that the model is related to general relativity and UV finite.Comment: 8 pages, 3 figure

    Topological Graph Polynomials in Colored Group Field Theory

    Full text link
    In this paper we analyze the open Feynman graphs of the Colored Group Field Theory introduced in [arXiv:0907.2582]. We define the boundary graph \cG_{\partial} of an open graph \cG and prove it is a cellular complex. Using this structure we generalize the topological (Bollobas-Riordan) Tutte polynomials associated to (ribbon) graphs to topological polynomials adapted to Colored Group Field Theory graphs in arbitrary dimension

    Operator Spin Foam Models

    Full text link
    The goal of this paper is to introduce a systematic approach to spin foams. We define operator spin foams, that is foams labelled by group representations and operators, as the main tool. An equivalence relation we impose in the set of the operator spin foams allows to split the faces and the edges of the foams. The consistency with that relation requires introduction of the (familiar for the BF theory) face amplitude. The operator spin foam models are defined quite generally. Imposing a maximal symmetry leads to a family we call natural operator spin foam models. This symmetry, combined with demanding consistency with splitting the edges, determines a complete characterization of a general natural model. It can be obtained by applying arbitrary (quantum) constraints on an arbitrary BF spin foam model. In particular, imposing suitable constraints on Spin(4) BF spin foam model is exactly the way we tend to view 4d quantum gravity, starting with the BC model and continuing with the EPRL or FK models. That makes our framework directly applicable to those models. Specifically, our operator spin foam framework can be translated into the language of spin foams and partition functions. We discuss the examples: BF spin foam model, the BC model, and the model obtained by application of our framework to the EPRL intertwiners.Comment: 19 pages, 11 figures, RevTex4.

    Feynman diagrammatic approach to spin foams

    Full text link
    "The Spin Foams for People Without the 3d/4d Imagination" could be an alternative title of our work. We derive spin foams from operator spin network diagrams} we introduce. Our diagrams are the spin network analogy of the Feynman diagrams. Their framework is compatible with the framework of Loop Quantum Gravity. For every operator spin network diagram we construct a corresponding operator spin foam. Admitting all the spin networks of LQG and all possible diagrams leads to a clearly defined large class of operator spin foams. In this way our framework provides a proposal for a class of 2-cell complexes that should be used in the spin foam theories of LQG. Within this class, our diagrams are just equivalent to the spin foams. The advantage, however, in the diagram framework is, that it is self contained, all the amplitudes can be calculated directly from the diagrams without explicit visualization of the corresponding spin foams. The spin network diagram operators and amplitudes are consistently defined on their own. Each diagram encodes all the combinatorial information. We illustrate applications of our diagrams: we introduce a diagram definition of Rovelli's surface amplitudes as well as of the canonical transition amplitudes. Importantly, our operator spin network diagrams are defined in a sufficiently general way to accommodate all the versions of the EPRL or the FK model, as well as other possible models. The diagrams are also compatible with the structure of the LQG Hamiltonian operators, what is an additional advantage. Finally, a scheme for a complete definition of a spin foam theory by declaring a set of interaction vertices emerges from the examples presented at the end of the paper.Comment: 36 pages, 23 figure

    Classical Setting and Effective Dynamics for Spinfoam Cosmology

    Full text link
    We explore how to extract effective dynamics from loop quantum gravity and spinfoams truncated to a finite fixed graph, with the hope of modeling symmetry-reduced gravitational systems. We particularize our study to the 2-vertex graph with N links. We describe the canonical data using the recent formulation of the phase space in terms of spinors, and implement a symmetry-reduction to the homogeneous and isotropic sector. From the canonical point of view, we construct a consistent Hamiltonian for the model and discuss its relation with Friedmann-Robertson-Walker cosmologies. Then, we analyze the dynamics from the spinfoam approach. We compute exactly the transition amplitude between initial and final coherent spin networks states with support on the 2-vertex graph, for the choice of the simplest two-complex (with a single space-time vertex). The transition amplitude verifies an exact differential equation that agrees with the Hamiltonian constructed previously. Thus, in our simple setting we clarify the link between the canonical and the covariant formalisms.Comment: 38 pages, v2: Link with discretized loop quantum gravity made explicit and emphasize

    Unified (q;α,β,γ;ν)(q;\alpha,\beta,\gamma;\nu)-deformation of one-parametric q-deformed oscillator algebras

    Full text link
    We define a generalized (q;α,β,γ;ν)(q;\alpha,\beta,\gamma;\nu)-deformed oscillator algebra and study the number of its characteristics. We describe the structure function of deformation, analyze the classification of irreducible representations and discuss the asymptotic spectrum behaviour of the Hamiltonian. For a special choice of the deformation parameters we construct the deformed oscillator with discrete spectrum of its "quantized coordinate" operator. We establish its connection with the (generalized) discrete Hermite I polynomials
    corecore