29 research outputs found

    Evidence for Integrin – Venus Kinase Receptor 1 Alliance in the Ovary of Schistosoma mansoni Females Controlling Cell Survival

    Get PDF
    Parasites of the genus Schistosoma cause schistosomiasis, a life-threatening infectious disease for humans and animals worldwide. Among the remarkable biological features of schistosomes is the differentiation of the female gonads which is controlled by pairing with the male and a prerequisite for egg production. Eggs, however, are not only important for the maintenance of the life-cycle; they also cause the pathological consequences of schistosomiasis. Part of the eggs gets trapped in host tissues such as liver and spleen and trigger inflammatory processes, finally leading to liver cirrhosis. Research activities of the last decade have indicated that different families of cellular and receptor-type kinases but also integrins contribute to the control of mitogenic activity and differentiation the female goands. In this context an unusual class of receptor tyrosine kinases (RTKs) has been identified, the venus kinase receptors (SmVKRs). By biochemical and molecular approaches we demonstrate that SmVKR1 activation can be achieved by cooperation with a signaling complex consisting of the beta integrin receptor SmĂź-Int1 and the bridging molecules SmILK, SmPINCH, SmNck2. Besides unravelling a novel way of SmVKR1 activation, we provide evidence that this complex controls the differentiation status of oocytes by regulating cell death-associated processes

    Transgenic C. elegans Dauer Larvae Expressing Hookworm Phospho Null DAF-16/FoxO Exit Dauer

    Get PDF
    Parasitic hookworms and the free-living model nematode Caenorhabtidis elegans share a developmental arrested stage, called the dauer stage in C. elegans and the infective third-stage larva (L3) in hookworms. One of the key transcription factors that regulate entrance to and exit from developmental arrest is the forkhead transcription factor DAF-16/FoxO. During the dauer stage, DAF-16 is activated and localized in the nucleus. DAF-16 is negatively regulated by phosphorylation by the upstream kinase AKT, which causes DAF-16 to localize out of the nucleus and the worm to exit from dauer. DAF-16 is conserved in hookworms, and hypothesized to control recovery from L3 arrest during infection. Lacking reverse genetic techniques for use in hookworms, we used C. elegans complementation assays to investigate the function of Ancylostoma caninum DAF-16 during entrance and exit from L3 developmental arrest. We performed dauer switching assays and observed the restoration of the dauer phenotype when Ac-DAF-16 was expressed in temperature-sensitive dauer defective C. elegans daf-2(e1370);daf-16(mu86) mutants. AKT phosphorylation site mutants of Ac-DAF-16 were also able to restore the dauer phenotype, but surprisingly allowed dauer exit when temperatures were lowered. We used fluorescence microscopy to localize DAF-16 during dauer and exit from dauer in C. elegans DAF-16 mutant worms expressing Ac-DAF-16, and found that Ac-DAF-16 exited the nucleus during dauer exit. Surprisingly, Ac-DAF-16 with mutated AKT phosphorylation sites also exited the nucleus during dauer exit. Our results suggest that another mechanism may be involved in the regulation DAF-16 nuclear localization during recovery from developmental arrest

    Host insulin stimulates Echinococcus multilocularis insulin signalling pathways and larval development.

    Get PDF
    BACKGROUND The metacestode of the tapeworm Echinococcus multilocularis is the causative agent of alveolar echinococcosis, a lethal zoonosis. Infections are initiated through establishment of parasite larvae within the intermediate host's liver, where high concentrations of insulin are present, followed by tumour-like growth of the metacestode in host organs. The molecular mechanisms determining the organ tropism of E. multilocularis or the influences of host hormones on parasite proliferation are poorly understood. RESULTS Using in vitro cultivation systems for parasite larvae we show that physiological concentrations (10 nM) of human insulin significantly stimulate the formation of metacestode larvae from parasite stem cells and promote asexual growth of the metacestode. Addition of human insulin to parasite larvae led to increased glucose uptake and enhanced phosphorylation of Echinococcus insulin signalling components, including an insulin receptor-like kinase, EmIR1, for which we demonstrate predominant expression in the parasite's glycogen storage cells. We also characterized a second insulin receptor family member, EmIR2, and demonstrated interaction of its ligand binding domain with human insulin in the yeast two-hybrid system. Addition of an insulin receptor inhibitor resulted in metacestode killing, prevented metacestode development from parasite stem cells, and impaired the activation of insulin signalling pathways through host insulin. CONCLUSIONS Our data indicate that host insulin acts as a stimulant for parasite development within the host liver and that E. multilocularis senses the host hormone through an evolutionarily conserved insulin signalling pathway. Hormonal host-parasite cross-communication, facilitated by the relatively close phylogenetic relationship between E. multilocularis and its mammalian hosts, thus appears to be important in the pathology of alveolar echinococcosis. This contributes to a closer understanding of organ tropism and parasite persistence in larval cestode infections. Furthermore, our data show that Echinococcus insulin signalling pathways are promising targets for the development of novel drugs

    Signalkaskaden von PlattwĂĽrmern als Angriffspunkte zur Entwicklung neuer Antihelminthika

    Get PDF
    Echinococcus multilocularis verursacht die Alveoläre Echinokokkose (AE), eine lebendsbedrohliche Krankheit mit limitierten chemotherapeutischen Möglichkeiten. Die jetzige Anti-AE Chemotherapie basiert auf einer einzigen Wirkstoffklasse, den Benzimidazolen. Obwohl Benzimidazole in vitro parasitozid wirken, wirken sie in vivo bei AE-Behandlung lediglich parasitostatisch und rufen schwere Nebenwirkungen hervor. In Fällen operabler Läsionen erfordert die Resektion des Parasitengewebes ĂĽber einen längeren Zeitraum eine chemotherapeutische UnterstĂĽtzung. Damit sind die jetzigen Behandlungsmöglichkeiten inadäquat und benötigen Alternativen. In der vorliegenden Arbeit wurden die Signalwege von PlattwĂĽrmern analysiert, um potentielle Targets fĂĽr neue therapeutische Ansätze zu identifizieren. Dabei konzentrierte ich mich unter Anwendung von molekularbiologischer, biochemischer und zellbiologischer Methoden auf Faktoren, die an Entwicklung und Proliferation von E. multilocularis beteiligt sind. Darunter waren die drei MAP kinases des Parasiten EmMPK1, ein Erk1/2-Ortholog, EmMPK2, ein p38-Ortholog und EmMPK3, ein Erk7/8-Ortholog. Des Weiteren identifizierte und charakterisierte ich EmMKK2, ein MEK1/2-Ortholog des Parasiten, welches zusammen mit den bekannten Kinasen EmRaf und EmMPK1 ein Erk1/2-ähnliches MAPK Modul bildet. Ich konnte zudem verschiedene EinflĂĽsse von Wirtswachstumsfaktoren wie EGF (epidermal growth factor) und Insulin auf die Signalmechanismen des Parasiten und das Larvenwachstum zeigen, darunter die Phosphorylierung von Elp, ein Ezrin-Radixin-Moesin ähnliches Protein, die Aktivierung von EmMPK1 und EmMPK3 und eine gesteigerte mitotische Aktivität der Echinokokkenzellen. Zusätzlich wurden verschiedene Substanzen auf ihre letale Wirkung auf den Parasiten untersucht, darunter befanden sich (1.) generelle Inhibitoren von Tyrosinkinasen (PP2, Leflunamid), (2.) gegen die Aktivität von Rezeptor-Tyrosin-Kinasen gerichtete Präparate, (3.) ursprĂĽnglich anti-neoplastische Wirkstoffe wie Miltefosin und Perifosin, (4.) Inhibitoren von Serin/ Threonin-Kinasen, die die Erk1/2 MAPK Kaskade blockieren und (5.) Inhibitoren der p38 MAPK. In diesen Untersuchungen hat sich EmMPK2 aus den folgenden GrĂĽnden als vielversprechendes Target erwiesen. Aminosäuresequenz-Analysen offenbarten einige Unterschiede zu menschlichen p38 MAP Kinasen, welche sehr wahrscheinlich die beobachtete gesteigerte basale Aktivität des rekombinanten EmMPK2 verursachen, verglichen mit der Aktivität humaner p38 MAPK-α. Zusätzlich suggerieren die prominente Autophosphorylierungsaktivität von rekombinantem EmMPK2 und das Ausbleiben einer Interaktion mit den Echinococcus MKKs einen unterschiedlichen Regulierungsmechanismus im Vergleich zu den humanen Proteinen. Die Aktivität von EmMPK2 konnte sowohl in vitro als auch in kultivierten Metazestodenvesikeln durch die Behandlung mit SB202190 und ML3403, zwei ATP kompetitiven Pyridinylimidazolinhibitoren der p38 MAPK, in Konzentrations-abhängiger Weise inhibiert werden. Zudem verursachten beide Substanzen, insbesondere ML3403 die Inaktivierung von Parasitenvesikeln bei Konzentrationen, die kultivierte Säugerzellen nicht beeinträchtigten. Ebenso verhinderte die Anwesenheit von ML3403 die Generation von neuen Vesikeln während der Kultivierung von Echinococcus Primärzellen. Das Targeting von Mitgliedern des EGF-Signalwegs, insbesondere der Erk1/2-ähnlichen MAPK Kaskade mit Raf- und MEK- Inhibitoren verhinderte die Phosphorylierung von EmMPK1 in in vitro kultivierten Metazestoden. Obwohl das Parasitenwachstum unter diesen Konditionen verhindert wurde, blieb die strukturelle Integrität der Metazestodenvesikeln während der Langzeitkultivierung in Anwesenheit der MAPK Kaskade-Inhibitoren erhalten. Ă„hnliche Effekte wurden beobachtet nach Behandlung mit den anderen zuvor aufgefĂĽhrten Inhibitoren. Zusammenfassend lässt sich festhalten, dass verschiedene Targets identifiziert werden konnten, die hoch sensibel auf die Anwesenheit der inhibitorischen Substanzen reagierten, aber nicht zum Absterben des Parasiten fĂĽhrten, mit Ausnahme der Pyridinylimidazolen. Die vorliegenden Daten zeigen, dass EmMPK2 ein Ăśberlebendsignal vermittelnden Faktor darstellt und dessen Inhibierung zur Behandlung der AE benutzt werden könnte. Dabei erwiesen sich p38 MAPK Inhibitoren der Pyridinylimidazolklasse als potentielle neue Substanzklasse gegen Echinokokken.Echinococcus multilocularis is the causative agent of alveolar echinococcosis (AE), a life-threatening disease with limited options of chemotherapeutic treatment. Anti-AE chemotherapy is currently based on a single class of drugs, the benzimidazoles. Although acting parasitocidic in vitro, benzimidazoles are merely parasitostatic during in vivo treatment of AE and cause severe site effects. In the case of operable lesions, the resection of parasite tissue needs to be supported by a prolonged chemotherapy. Thus, the current treatment options for AE are inadequate and require alternatives. In the present work, the flatworm signaling pathways were analyzed to establish potential targets for novel therapeutic approaches. I focused on factors that are involved in development and proliferation of E. multilocularis using molecular, biochemical and cell biological methods. Among the analysed factors were three MAP kinases of the parasite, EmMPK1, an Erk-1/2 orthologue, EmMPK2, a p38 orthologue and EmMPK3, an Erk7/8 orthologue. Further, I identified and characterized EmMKK2, a MEK1/2 orthologue of the parasite, which, together with the known kinases EmRaf and EmMPK1, forms an Erk1/2-like MAPK module. Moreover, I was able to demonstrate several influences of host growth factors such as EGF (epidermal growth factor) and insulin on worm signaling mechanisms and larval growth, including the phosphorylation of Elp, an ezrin-radixin-moesin like protein, EmMPK1, EmMPK3 and increased mitotic activity of Echinococcus cells. In addition, several substances were examined for their efficacy against the parasite including (i) general tyrosine kinase inhibitors (PP2, leflunamide), (ii) compounds designed to inhibit the activity of receptor tyrosine kinases, (iii) anti-neoplastic agents (miltefosine, perifosine), (iv) serine/threonine kinase inhibitors that have been designed to block the Erk1/2 MAPK cascade and (v) inhibitors of p38 MAPKs. In these studies, EmMPK2 proved to be a promising drug target for the following reasons. Amino acid sequence analysis disclosed several differences to human p38 MAPKs, which is likely to be the reason for the observed enhanced basal activity of recombinant EmMPK2 towards myelin basic protein in comparison to human recombinant p38 MAPK-α. In addition, the prominent auto-phosphorylation activity of the recombinant EmMPK2 protein together with the absence of an interaction with the Echinococcus MKKs suggest a different mechanism of regulation compared to the human enzyme. EmMPK2 activity could be effectively inhibited in vitro and in cultivated metacestode vesicles by treatment with SB202190 and ML3403, two ATP-competitive pyridinyl imidazole inhibitors of p38 MAPKs, in a concentration-dependent manner. Moreover, both compounds, in particular ML3403, caused parasite vesicle inactivation at concentrations which did not affect cultured mammalian cells. Likewise, during the cultivation of Echinococcus primary cells, the presence of ML3403 prevented the generation of new vesicles. Targeting members of the EGF signaling pathway, particulary of the Erk1/2-like MAPK cascade, with Raf and MEK inhibitors prevented the phosphorylation of EmMPK1 in metacestodes cultivated in vitro. However, although parasite growth was prevented under these conditions, the structural integrity of the metacestode vesicles maintained during long-term cultivation in the presence of the MAPK cascade inhibitors. Similar results were obtained when studying the effects of other drugs mentioned above. Taken together, several targets could be identified that reacted with high sensitivity to the presence of inhibitory substances, but did not cause the parasite’s death with one exception, the pyridinyl imidazoles. Based on the presented data, I suggest pyridinyl imidazoles as a novel class of anti-Echinococcus drugs and imply EmMPK2 as survival signal mediating factor, the inhibition of which could be used for the treatment of AE

    Characterization of hookworm heat shock factor binding protein (HSB-1) during heat shock and larval activation

    No full text
    When hookworm infective L3s infect their mammalian host, they undergo a temperature shift from that of the ambient environment to that of their endothermic host. Additionally, L3s living in the environment can be exposed to temperature extremes associated with weather fluctuations. The heat shock response (HSR) is a conserved response to heat shock and other stress that involves the expression of protective heat shock proteins (HSPs). The HSR is controlled by heat shock factor 1 (HSF-1), a conserved transcription factor that binds to a heat shock element in the promoter of HSPs, causing their expression. HSF-1 is negatively regulated in part by a HSF binding protein (HSB-1) that binds to and removes HSF-1 trimers bound to HSP gene promoters, resulting in attenuation of the HSR. Herein we describe an HSB-1 ortholog, Ac-HSB-1, from the hookworm Ancylostoma caninum. The Ac-hsb-1 cDNA encodes a 79 amino acid protein that is 71% identical to the Caenorhabditis elegans HSB-1, and is predicted to share the characteristic coiled-coil structural motif comprised of two interacting alpha helices. Recombinant Ac-HSB-1 immunoprecipitated Ce-HSF-1 expressed in mammalian cells that had been heat shocked for 1 h at 42°C, but not from cells incubated at 37°C, indicating that HSB-1 only bound to the active DNA binding form of HSF-1. Expression of Ac-hsb-1 transcripts decreased following 1 h of heat shock, but increased when L3s were incubated at 37°C for 1 h. Activation of hookworm L3s induces an five- to six-fold increase in Ac-hsb-1 expression that peaks at 12 h, coincident with L3 feeding, but that subsequently decreases to two- to three-fold above control at 24 h. Recombinant Ac-HSB-1 immunoprecipitates greater amounts of 70 and 40 kDa proteins from extracts of activated L3s than from non-activated L3s. We propose that an increase in Ac-hsb-1 levels early in activation allows feeding to resume, but that a subsequent decrease in expression permits a HSR that protects non-developing L3s at host-like temperatures. Further investigations of the HSR will clarify the role of HSB-1 and HSF-1 in hookworm infection

    Characterisation of hookworm heat shock factor binding protein (HSB-1) during heat shock and larval activation

    No full text
    When hookworm infective L3s infect their mammalian host, they undergo a temperature shift from that of the ambient environment to that of their endothermic host. Additionally, L3s living in the environment can be exposed to temperature extremes associated with weather fluctuations. The heat shock response (HSR) is a conserved response to heat shock and other stress that involves the expression of protective heat shock proteins (HSPs). The HSR is controlled by heat shock factor-1 (HSF-1), a conserved transcription factor that binds to a heat shock element in the promoter of HSPs, causing their expression. HSF-1 is negatively regulated in part by a HSF binding protein (HSB-1) that binds to and removes HSF-1 trimers bound to HSP gene promoters, resulting in attenuation of the HSR. Herein we describe an HSB-1 orthologue, Ac-HSB-1, from the hookworm Ancylostoma caninum. The Ac-hsb-1 cDNA encodes a 79 amino acid protein that is 71% identical to the Caenorhabditis elegans HSB-1, and is predicted to share the characteristic coiled-coil structural motif comprised of two interacting alpha helices. Recombinant Ac-HSB-1 immunoprecipitated Ce-HSF-1 expressed in mammalian cells that had been heat shocked for 1. h at 42. °C, but not from cells incubated at 37. °C, indicating that HSB-1 only bound to the active DNA binding form of HSF-1. Expression of Ac-hsb-1 transcripts decreased following 1. h of heat shock, but increased when L3s were incubated at 37. °C for 1. h. Activation of hookworm L3s induces a five-sixfold increase in Ac-hsb-1 expression that peaks at 12. h, coincident with L3 feeding, but that subsequently decreases to two-threefold above control at 24. h. Recombinant Ac-HSB-1 immunoprecipitates greater amounts of 70 and 40. kDa proteins from extracts of activated L3s than from non-activated L3s. We propose that an increase in Ac-hsb-1 levels early in activation allows feeding to resume, but that a subsequent decrease in expression permits a HSR that protects non-developing L3s at host-like temperatures. Further investigations of the HSR will clarify the role of HSB-1 and HSF-1 in hookworm infection. © 2010 Australian Society for Parasitology Inc

    RNA and protein synthesis is required for Ancylostoma caninum larval activation

    No full text
    The developmentally arrested infective larva of hookworms encounters a host-specific signal during invasion that initiates the resumption of suspended developmental pathways. The resumption of development during infection is analogous to recovery from the facultative arrested dauer stage in the free-living nematode Caenorhabditis elegans. Infective larvae of the canine hookworm Ancylostoma caninum resume feeding and secrete molecules important for infection when exposed to a host mimicking signal in vitro. This activation process is a model for the initial steps of the infective process. Dauer recovery requires protein synthesis, but not RNA synthesis in C. elegans. To determine the role of RNA and protein synthesis in hookworm infection, inhibitors of RNA and protein synthesis were tested for their effect on feeding and secretion by A. caninum infective larvae. The RNA synthesis inhibitors α-amanitin and actinomycin D inhibit feeding dose-dependently, with IC(50) values of 30 and 8 µM, respectively. The protein synthesis inhibitors puromycin (IC(50) =110 µM), cycloheximide (IC(50) =50 µM), and anisomycin (IC(50) =200 µM) also displayed dose-dependent inhibition of larval feeding. Significant inhibition of feeding by α-amanitin and anisomycin occurred when the inhibitors were added before 12 h of the activation process, but not if the inhibitors were added after 12 h. None of the RNA or protein synthesis inhibitors prevented secretion of the activation-associated protein ASP-1, despite nearly complete inhibition of feeding. The results indicate that unlike dauer recovery in C. elegans, de novo gene expression is required for hookworm larval activation, and the critical genes are expressed within 12 h of exposure to activating stimuli. However, secretion of infection-associated proteins is independent of gene expression, indicating that the proteins are pre-synthesized and stored for rapid release during the initial stages of infection. The genes that are inhibited represent a subset of those required for the transition to parasitism, and therefore represent interesting targets for further investigation. Furthermore, while dauer recovery provides a useful model for hookworm infection, the differences identified here highlight the importance of exercising caution before making generalizations about parasitic nematodes based on C. elegans biology

    Expression profile of heat shock response factors during hookworm larval activation and parasitic development.

    No full text
    When organisms are exposed to an increase in temperature, they undergo a heat shock response (HSR) regulated by the transcription factor heat shock factor 1 (HSF-1). The heat shock response includes the rapid changes in gene expression initiated by binding of HSF-1 to response elements in the promoters of heat shock genes. Heat shock proteins function as molecular chaperones to protect proteins during periods of elevated temperature and other stress. During infection, hookworm infective third stage larvae (L3) undergo a temperature shift from ambient to host temperature. This increased temperature is required for the resumption of feeding and activation of L3, but whether this increase initiates a heat shock response is unknown. To investigate the role of the heat shock in hookworm L3 activation and parasitic development, we identified and characterized the expression profile of several components of the heat shock response in the hookworm Ancylostoma caninum. We cloned DNAs encoding an hsp70 family member (Aca-hsp-1) and an hsp90 family member (Aca-daf-21). Exposure to a heat shock of 42 °C for one hour caused significant up-regulation of both genes, which slowly returned to near baseline levels following one hour attenuation at 22 °C. Neither gene was up-regulated in response to host temperature (37 °C). Conversely, levels of hsf-1 remained unchanged during heat shock, but increased in response to incubation at 37°C. During activation, both hsp-1 and daf-21 are down regulated early, although daf-21 levels increase significantly in non-activated control larvae after 12 hours, and slightly in activated larvae by 24 hours incubation. The heat shock response modulators celastrol and KNK437 were tested for their effects on gene expression during heat shock and activation. Pre-incubation with celastrol, an HSP90 inhibitor that promotes heat shock gene expression, slightly up-regulated expression of both hsp-1 and daf-21 during heat shock. KNK437, an inhibitor of heat shock protein expression, slightly down regulated both genes under similar conditions. Both modulators inhibited activation-associated feeding, but neither had an effect on hsp-1 levels in activated L3 at 16 hours. Both celastrol and KNK437 prevent the up-regulation of daf-21 and hsf-1 seen in non-activated control larvae during activation, and significantly down regulated expression of the HSF-1 negative regulator Aca-hsb-1 in activated larvae. Expression levels of heat shock response factors were examined in developing A. ceylanicum larvae recovered from infected hosts and found to differ significantly from the expression profile of activated L3, suggesting that feeding during in vitro activation is regulated differently than parasitic development. Our results indicate that a classical heat shock response is not induced at host temperature and is suppressed during larval recovery and parasitic development in the host, but a partial heat shock response is induced after extended incubation at host temperature in the absence of a developmental signal, possibly to protect against heat stress

    Caspase-3 activity increases following QLT-0276 treatment in paired females.

    No full text
    <p>Result of the caspase-3 activity assay showing that compared to a DMSO-treated control (left) the activity of caspase-3 of <i>S</i>. <i>man</i>soni increased significantly (p = 0.01) in paired females treated with 100 μM QLT-0276 (right) as determined spectrophotometrically (ΔOD<sub>405</sub>).</p
    corecore