1,535 research outputs found
Helicity and alpha-effect by current-driven instabilities of helical magnetic fields
Helical magnetic background fields with adjustable pitch angle are imposed on
a conducting fluid in a differentially rotating cylindrical container. The
small-scale kinetic and current helicities are calculated for various field
geometries, and shown to have the opposite sign as the helicity of the
large-scale field. These helicities and also the corresponding -effect
scale with the current helicity of the background field. The -tensor is
highly anisotropic as the components and have
opposite signs. The amplitudes of the azimuthal -effect computed with
the cylindrical 3D MHD code are so small that the operation of an
dynamo on the basis of the current-driven, kink-type
instabilities of toroidal fields is highly questionable. In any case the low
value of the -effect would lead to very long growth times of a dynamo
in the radiation zone of the Sun and early-type stars of the order of
mega-years.Comment: 6 pages, 7 figures, submitted to MNRA
Angular momentum transport efficiency in post-main sequence low-mass stars
Context. Using asteroseismic techniques, it has recently become possible to
probe the internal rotation profile of low-mass (~1.1-1.5 Msun) subgiant and
red giant stars. Under the assumption of local angular momentum conservation,
the core contraction and envelope expansion occurring at the end of the main
sequence would result in a much larger internal differential rotation than
observed. This suggests that angular momentum redistribution must be taking
place in the interior of these stars. Aims. We investigate the physical nature
of the angular momentum redistribution mechanisms operating in stellar
interiors by constraining the efficiency of post-main sequence rotational
coupling. Methods. We model the rotational evolution of a 1.25 Msun star using
the Yale Rotational stellar Evolution Code. Our models take into account the
magnetic wind braking occurring at the surface of the star and the angular
momentum transport in the interior, with an efficiency dependent on the degree
of internal differential rotation. Results. We find that models including a
dependence of the angular momentum transport efficiency on the radial
rotational shear reproduce very well the observations. The best fit of the data
is obtained with an angular momentum transport coefficient scaling with the
ratio of the rotation rate of the radiative interior over that of the
convective envelope of the star as a power law of exponent ~3. This scaling is
consistent with the predictions of recent numerical simulations of the
Azimuthal Magneto-Rotational Instability. Conclusions. We show that an angular
momentum transport process whose efficiency varies during the stellar evolution
through a dependence on the level of internal differential rotation is required
to explain the observed post-main sequence rotational evolution of low-mass
stars.Comment: 8 pages, 6 figures; accepted for publication in Astronomy &
Astrophysic
Nonaxisymmetric MHD instabilities of Chandrasekhar states in Taylor-Couette geometry
We consider axially periodic Taylor-Couette geometry with insulating boundary
conditions. The imposed basic states are so-called Chandrasekhar states, where
the azimuthal flow and magnetic field have the same radial
profiles. Mainly three particular profiles are considered: the Rayleigh limit,
quasi-Keplerian, and solid-body rotation. In each case we begin by computing
linear instability curves and their dependence on the magnetic Prandtl number
Pm. For the azimuthal wavenumber m=1 modes, the instability curves always scale
with the Reynolds number and the Hartmann number. For sufficiently small Pm
these modes therefore only become unstable for magnetic Mach numbers less than
unity, and are thus not relevant for most astrophysical applications. However,
modes with m>10 can behave very differently. For sufficiently flat profiles,
they scale with the magnetic Reynolds number and the Lundquist number, thereby
allowing instability also for the large magnetic Mach numbers of astrophysical
objects. We further compute fully nonlinear, three-dimensional equilibration of
these instabilities, and investigate how the energy is distributed among the
azimuthal (m) and axial (k) wavenumbers. In comparison spectra become steeper
for large m, reflecting the smoothing action of shear. On the other hand
kinetic and magnetic energy spectra exhibit similar behavior: if several
azimuthal modes are already linearly unstable they are relatively flat, but for
the rigidly rotating case where m=1 is the only unstable mode they are so steep
that neither Kolmogorov nor Iroshnikov-Kraichnan spectra fit the results. The
total magnetic energy exceeds the kinetic energy only for large magnetic
Reynolds numbers Rm>100.Comment: 12 pages, 14 figures, submitted to Ap
Dissipative Taylor-Couette flows under the influence of helical magnetic fields
The linear stability of MHD Taylor-Couette flows in axially unbounded
cylinders is considered, for magnetic Prandtl number unity. Magnetic fields
varying from purely axial to purely azimuthal are imposed, with a general
helical field parameterized by \beta=B_\phi/B_z. We map out the transition from
the standard MRI for \beta=0 to the nonaxisymmetric Azimuthal MagnetoRotational
Instability (AMRI) for \beta\to \infty. For finite \beta, positive and negative
wave numbers m, corresponding to right and left spirals, are no longer
identical. The transition from \beta=0 to \beta\to\infty includes all the
possible forms of MRI with axisymmetric and nonaxisymmetric modes. For the
nonaxisymmetric modes, the most unstable mode spirals in the opposite direction
to the background field. The standard (\beta=0) MRI is axisymmetric for weak
fields (including the instability with the lowest Reynolds number) but is
nonaxisymmetric for stronger fields. If the azimuthal field is due in part to
an axial current flowing through the fluid itself (and not just along the
central axis), then it is also unstable to the nonaxisymmetric Tayler
instability, which is most effective without rotation. For large \beta this
instability has wavenumber m=1, whereas for \beta\simeq 1 m=2 is most unstable.
The most unstable mode spirals in the same direction as the background field.Comment: 9 pages, 11 figure
Fe-Bearing Phases Identified by the Moessbauer Spectrometers on the Mars Exploration Rovers: An Overview
The twin Mars Exploration Rovers Spirit and Opportunity have explored the martian surface at Gusev Crater (GC) and Meridiani Planum (MP), respectively, for about two Earth years. The Moessbauer (MB) spectrometers on both rovers have analyzed an aggregate of ~200 surface targets and have returned to Earth information on the oxidation state of iron, the mineralogical composition of Febearing phases, and the distribution of Fe among oxidation states and phases at the two landing sites [1-7]. To date, 15 component subspectra (10 doublets and 5 sextets) have been identified and most have been assigned to mineralogical compositions. Two subspectra are assigned to phases (jarosite and goethite) that are marker minerals for aqueous processes because they contain hydroxide anion in their structures. In this paper, we give an overview of the Febearing phases identified and their distributions at Gusev crater and Meridiani Planum
Chemistry of Martian Soils from the Mars Exploration Rover APXS Instruments
The martian surface is covered with debris formed by several mechanisms and mobilized by various processes. Volcanism, impact, physical weathering and chemical alteration combine to produce particles of sizes from dust to boulders composed of primary mineral and rock fragments, partially altered primary materials, alteration minerals and shock-modified materials from all of these. Impacts and volcanism produce localized deposits. Winds transport roughly sand-sized material over intermediate distances, while periodic dust storms deposit a global dust layer of the finest fraction. The compositions of clastic sediments can be used to evaluate regional differences in crustal composition and/or weathering processes. Here we examine the growing body of chemical data on soils in Gusev crater and Meridiani Planum returned by the Alpha Particle X-ray Spectrometer (APXS) instruments on the rovers Spirit (MERA) and Opportunity (MERB), following on earlier results based on smaller data sets [1-4]
Recommended from our members
Fireball yield from fractional intensity diameters
It is desired to develop an empirical formula of the type Y=KD[sup n] where Y is the yield in kilotons and D is the `effective diameter` in feet corrected for temperature and pressure variations if necessary
More on the Possible Composition of the Meridiani Hematite-Rich Concretions
Elsewhere in these proceedings, Schneider et al. discuss compositional constraints on hematite-rich spherule (blueberry) formation at Meridiani Planum. Schneider et al. provide the background for work done to date to understand the composition and mineralogy of the spherules and devise a test of possible concretion growth processes. They also report the results of area analyses of spherules in targets analyzed with the Alpha Particle X-ray Spectrometer (APXS) and test several possible models for included components other than hematite. In this abstract, we use the compositional trends for spherule-rich targets to compute possible elemental compositions of the spherules. This approach differs from that of, which also used a determination of the area of spherules in APXS targets, coupled with a correction for the radial acceptance function, to try to un-mix the compositions directly, using 2 and 3-component models and mass balance. That approach contained a fair amount of uncertainty owing to problems associated with irregular and heterogeneous target geometry, unknown composition of non-spherule lithic components, and variable dust coatings on spherules. Since then, Opportunity has analyzed additional spherule-rich targets, and the compositional trends so obtained permit a more direct assessment of the data
- …