3,495 research outputs found

    Psychological effects of substantial and appetizing menus for submarine personnel

    Get PDF
    Psychological effects of food service on submarine personne

    Causality in Time-Neutral Cosmologies

    Get PDF
    Gell-Mann and Hartle (GMH) have recently considered time-neutral cosmological models in which the initial and final conditions are independently specified, and several authors have investigated experimental tests of such models. We point out here that GMH time-neutral models can allow superluminal signalling, in the sense that it can be possible for observers in those cosmologies, by detecting and exploiting regularities in the final state, to construct devices which send and receive signals between space-like separated points. In suitable cosmologies, any single superluminal message can be transmitted with probability arbitrarily close to one by the use of redundant signals. However, the outcome probabilities of quantum measurements generally depend on precisely which past {\it and future} measurements take place. As the transmission of any signal relies on quantum measurements, its transmission probability is similarly context-dependent. As a result, the standard superluminal signalling paradoxes do not apply. Despite their unusual features, the models are internally consistent. These results illustrate an interesting conceptual point. The standard view of Minkowski causality is not an absolutely indispensable part of the mathematical formalism of relativistic quantum theory. It is contingent on the empirical observation that naturally occurring ensembles can be naturally pre-selected but not post-selected.Comment: 5 pages, RevTeX. Published version -- minor typos correcte

    Two-parameter generalization of the logarithm and exponential functions and Boltzmann-Gibbs-Shannon entropy

    Full text link
    The qq-sum xqyx+y+(1q)xyx \oplus_q y \equiv x+y+(1-q) xy (x1y=x+yx \oplus_1 y=x+y) and the qq-product xqy[x1q+y1q1]11qx\otimes_q y \equiv [x^{1-q} +y^{1-q}-1]^{\frac{1}{1-q}} (x1y=xyx\otimes_1 y=x y) emerge naturally within nonextensive statistical mechanics. We show here how they lead to two-parameter (namely, qq and qq^\prime) generalizations of the logarithmic and exponential functions (noted respectively lnq,qx\ln_{q,q^\prime}x and eq,qxe_{q,q^\prime}^{x}), as well as of the Boltzmann-Gibbs-Shannon entropy SBGSki=1WpilnpiS_{BGS}\equiv -k \sum_{i=1}^Wp_i \ln p_i (noted Sq,qS_{q,q^\prime}). The remarkable properties of the (q,q)(q,q^\prime)-generalized logarithmic function make the entropic form Sq,qki=1Wpilnq,q(1/pi)S_{q,q^\prime} \equiv k \sum_{i=1}^W p_i \ln_{q,q^\prime}(1/p_i) to satisfy, for large regions of (q,q)(q,q^\prime), important properties such as {\it expansibility}, {\it concavity} and {\it Lesche-stability}, but not necessarily {\it composability}.Comment: 9 pages, 4 figure

    Quasiclassical Coarse Graining and Thermodynamic Entropy

    Get PDF
    Our everyday descriptions of the universe are highly coarse-grained, following only a tiny fraction of the variables necessary for a perfectly fine-grained description. Coarse graining in classical physics is made natural by our limited powers of observation and computation. But in the modern quantum mechanics of closed systems, some measure of coarse graining is inescapable because there are no non-trivial, probabilistic, fine-grained descriptions. This essay explores the consequences of that fact. Quantum theory allows for various coarse-grained descriptions some of which are mutually incompatible. For most purposes, however, we are interested in the small subset of ``quasiclassical descriptions'' defined by ranges of values of averages over small volumes of densities of conserved quantities such as energy and momentum and approximately conserved quantities such as baryon number. The near-conservation of these quasiclassical quantities results in approximate decoherence, predictability, and local equilibrium, leading to closed sets of equations of motion. In any description, information is sacrificed through the coarse graining that yields decoherence and gives rise to probabilities for histories. In quasiclassical descriptions, further information is sacrificed in exhibiting the emergent regularities summarized by classical equations of motion. An appropriate entropy measures the loss of information. For a ``quasiclassical realm'' this is connected with the usual thermodynamic entropy as obtained from statistical mechanics. It was low for the initial state of our universe and has been increasing since.Comment: 17 pages, 0 figures, revtex4, Dedicated to Rafael Sorkin on his 60th birthday, minor correction

    The Symmetries of Nature

    Get PDF
    The study of the symmetries of nature has fascinated scientists for eons. The application of the formal mathematical description of symmetries during the last century has produced many breakthroughs in our understanding of the substructure of matter. In this talk, a number of these advances are discussed, and the important role that George Sudarshan played in their development is emphasize

    On CP Violation in Minimal Renormalizable SUSY SO(10) and Beyond

    Full text link
    We investigate the role of CP phases within the renormalizable SUSY SO(10) GUT with one 10_H, one 126bar_H one 126_H and one 210_H Higgs representations and type II seesaw dominating the neutrino mass matrix. This framework is non trivially predictive in the fermionic sector and connects in a natural way the GUT unification of b and tau Yukawa couplings with the bi-large mixing scenario for neutrinos. On the other hand, existing numerical analysis claim that consistency with quark and charged lepton data prevents the minimal setup from reproducing the observed CP violation via the Cabibbo-Kobayashi-Maskawa (CKM) matrix. We re-examine the issue and find by inspection of the fermion mass sum rules and a detailed numerical scan that, even though the CKM phase takes preferentially values in the second quadrant, the agreement of the minimal model with the data is actually obtained in a non negligible fraction of the parameter space. We then consider a recently proposed renormalizable extension of the minimal model, obtained by adding one chiral 120-dimensional Higgs supermultiplet. We show that within such a setup the CKM phase falls naturally in the observed range. We emphazise the robust predictivity of both models here considered for neutrino parameters that are in the reach of ongoing and future experiments.Comment: 9 pages, 6 figures. Two refs added, discussion expanded. To appear on Phys. Rev.

    Probing minimal supergravity in the type-I seesaw mechanism with lepton flavour violation at the CERN LHC

    Get PDF
    The most general supersymmetric seesaw mechanism has too many parameters to be predictive and thus can not be excluded by any measurements of lepton flavour violating (LFV) processes. We focus on the simplest version of the type-I seesaw mechanism assuming minimal supergravity boundary conditions. We compute branching ratios for the LFV scalar tau decays, τ~2(e,μ)+χ10{\tilde \tau}_2 \to (e,\mu) + \chi^0_1, as well as loop-induced LFV decays at low energy, such as lilj+γl_i \to l_j + \gamma and li3ljl_i \to 3 l_j, exploring their sensitivity to the unknown seesaw parameters. We find some simple, extreme scenarios for the unknown right-handed parameters, where ratios of LFV branching ratios correlate with neutrino oscillation parameters. If the overall mass scale of the left neutrinos and the value of the reactor angle were known, the study of LFV allows, in principle, to extract information about the so far unknown right-handed neutrino parameters.Comment: 29 pages, 27 figures; added explanatory comments, corrected typos, final version for publicatio

    Asymptotically scale-invariant occupancy of phase space makes the entropy Sq extensive

    Full text link
    Phase space can be constructed for NN equal and distinguishable subsystems that could be (probabilistically) either {\it weakly} (or {\it "locally"}) correlated (e.g., independent, i.e., uncorrelated), or {\it strongly} (or {\it globally}) correlated. If they are locally correlated, we expect the Boltzmann-Gibbs entropy SBGkipilnpiS_{BG} \equiv -k \sum_i p_i \ln p_i to be {\it extensive}, i.e., SBG(N)NS_{BG}(N)\propto N for NN \to\infty. In particular, if they are independent, SBGS_{BG} is {\it strictly additive}, i.e., SBG(N)=NSBG(1),NS_{BG}(N)=N S_{BG}(1), \forall N. However, if the subsystems are globally correlated, we expect, for a vast class of systems, the entropy Sqk[1ipiq]/(q1)S_q\equiv k [1- \sum_i p_i^q]/(q-1) (with S1=SBGS_1=S_{BG}) for some special value of q1q\ne1 to be the one which extensive (i.e., Sq(N)NS_q(N)\propto N for NN \to\infty).Comment: 15 pages, including 9 figures and 8 Tables. The new version is considerably enlarged with regard to the previous ones. New examples and new references have been include

    Nonextensive aspects of self-organized scale-free gas-like networks

    Full text link
    We explore the possibility to interpret as a 'gas' the dynamical self-organized scale-free network recently introduced by Kim et al (2005). The role of 'momentum' of individual nodes is played by the degree of the node, the 'configuration space' (metric defining distance between nodes) being determined by the dynamically evolving adjacency matrix. In a constant-size network process, 'inelastic' interactions occur between pairs of nodes, which are realized by the merger of a pair of two nodes into one. The resulting node possesses the union of all links of the previously separate nodes. We consider chemostat conditions, i.e., for each merger there will be a newly created node which is then linked to the existing network randomly. We also introduce an interaction 'potential' (node-merging probability) which decays with distance d_ij as 1/d_ij^alpha; alpha >= 0). We numerically exhibit that this system exhibits nonextensive statistics in the degree distribution, and calculate how the entropic index q depends on alpha. The particular cases alpha=0 and alpha to infinity recover the two models introduced by Kim et al.Comment: 7 pages, 5 figure

    Excited nucleon electromagnetic form factors from broken spin-flavor symmetry

    Full text link
    A group theoretical derivation of a relation between the N --> Delta charge quadrupole transition and neutron charge form factors is presented.Comment: 4 pages, Proc. of the 12 th Int'l. Workshop on the Physics of Excited Nucleons, NSTAR 2009, Beijing, April 19-22, 200
    corecore