3,524 research outputs found

    Convergent expansions for properties of the Heisenberg model for CaV4_4O9_9

    Full text link
    We have carried out a wide range of calculations for the S=1/2S=1/2 Heisenberg model with nearest- and second-neighbor interactions on a two-dimensional lattice which describes the geometry of the vanadium ions in the spin-gap system CaV4_4O9_9. The methods used were convergent high-order perturbation expansions (``Ising'' and ``Plaquette'' expansions at T=0T=0, as well as high-temperature expansions) for quantities such as the uniform susceptibility, sublattice magnetization, and triplet elementary excitation spectrum. Comparison with the data for CaV4_4O9_9 indicates that its magnetic properties are well described by nearest-neighbor exchange of about 200K in conjunction with second-neighbor exchange of about 100K.Comment: Uses REVTEX macros. Four pages in two-column format, five postscript figures. Files packaged using uufile

    The twistor geometry of three-qubit entanglement

    Full text link
    A geometrical description of three qubit entanglement is given. A part of the transformations corresponding to stochastic local operations and classical communication on the qubits is regarded as a gauge degree of freedom. Entangled states can be represented by the points of the Klein quadric Q{\cal Q} a space known from twistor theory. It is shown that three-qubit invariants are vanishing on special subspaces of Q{\cal Q}. An invariant vanishing for the GHZGHZ class is proposed. A geometric interpretation of the canonical decomposition and the inequality for distributed entanglement is also given.Comment: 4 pages RevTeX

    Zero Curvature Formalism for Supersymmetric Integrable Hierarchies in Superspace

    Get PDF
    We generalize the Drinfeld-Sokolov formalism of bosonic integrable hierarchies to superspace, in a way which systematically leads to the zero curvature formulation for the supersymmetric integrable systems starting from the Lax equation in superspace. We use the method of symmetric space as well as the non-Abelian gauge technique to obtain the supersymmetric integrable hierarchies of the AKNS type from the zero curvature condition in superspace with the graded algebras, sl(n+1,n), providing the Hermitian symmetric space structure.Comment: LaTeX, 9 pg

    Darboux transformations for a twisted derivation and quasideterminant solutions to the super KdV equation

    Full text link
    This paper is concerned with a generalized type of Darboux transformations defined in terms of a twisted derivation DD satisfying D(AB)=D(A)+σ(A)BD(AB)=D(A)+\sigma(A)B where σ\sigma is a homomorphism. Such twisted derivations include regular derivations, difference and qq-difference operators and superderivatives as special cases. Remarkably, the formulae for the iteration of Darboux transformations are identical with those in the standard case of a regular derivation and are expressed in terms of quasideterminants. As an example, we revisit the Darboux transformations for the Manin-Radul super KdV equation, studied in Q.P. Liu and M. Ma\~nas, Physics Letters B \textbf{396} 133--140, (1997). The new approach we take enables us to derive a unified expression for solution formulae in terms of quasideterminants, covering all cases at once, rather than using several subcases. Then, by using a known relationship between quasideterminants and superdeterminants, we obtain expressions for these solutions as ratios of superdeterminants. This coincides with the results of Liu and Ma\~nas in all the cases they considered but also deals with the one subcase in which they did not obtain such an expression. Finally, we obtain another type of quasideterminant solutions to the Main-Radul super KdV equation constructed from its binary Darboux transformations. These can also be expressed as ratios of superdeterminants and are a substantial generalization of the solutions constructed using binary Darboux transformations in earlier work on this topic

    Spin-S bilayer Heisenberg models: Mean-field arguments and numerical calculations

    Full text link
    Spin-S bilayer Heisenberg models (nearest-neighbor square lattice antiferromagnets in each layer, with antiferromagnetic interlayer couplings) are treated using dimer mean-field theory for general S and high-order expansions about the dimer limit for S=1, 3/2,...,4. We suggest that the transition between the dimer phase at weak intraplane coupling and the Neel phase at strong intraplane coupling is continuous for all S, contrary to a recent suggestion based on Schwinger boson mean-field theory. We also present results for S=1 layers based on expansions about the Ising limit: In every respect the S=1 bilayers appear to behave like S=1/2 bilayers, further supporting our picture for the nature of the order-disorder phase transition.Comment: 6 pages, Revtex 3.0, 8 figures (not embedded in text

    Effective-Medium Theory for the Normal State in Orientationally Disordered Fullerides

    Full text link
    An effective-medium theory for studying the electronic structure of the orientationally disordered A3C60 fullerides is developed and applied to study various normal-state properties. The theory is based on a cluster-Bethe-lattice method in which the disordered medium is modelled by a three-band Bethe lattice, into which we embed a molecular cluster whose scattering properties are treated exactly. Various single-particle properties and the frequency-dependent conductivity are calculated in this model, and comparison is made with numerical calculations for disordered lattices, and with experiment.Comment: 12 pages + 2 figures, REVTeX 3.

    Coupling Poisson and Jacobi structures on foliated manifolds

    Full text link
    Let M be a differentiable manifold endowed with a foliation F. A Poisson structure P on M is F-coupling if the image of the annihilator of TF by the sharp-morphism defined by P is a normal bundle of the foliation F. This notion extends Sternberg's coupling symplectic form of a particle in a Yang-Mills field. In the present paper we extend Vorobiev's theory of coupling Poisson structures from fiber bundles to foliations and give simpler proofs of Vorobiev's existence and equivalence theorems of coupling Poisson structures on duals of kernels of transitive Lie algebroids over symplectic manifolds. Then we discuss the extension of the coupling condition to Jacobi structures on foliated manifolds.Comment: LateX, 38 page

    Ground State and Elementary Excitations of the S=1 Kagome Heisenberg Antiferromagnet

    Get PDF
    Low energy spectrum of the S=1 kagom\'e Heisenberg antiferromagnet (KHAF) is studied by means of exact diagonalization and the cluster expansion. The magnitude of the energy gap of the magnetic excitation is consistent with the recent experimental observation for \mpynn. In contrast to the S=1/2S=1/2 KHAF, the non-magnetic excitations have finite energy gap comparable to the magnetic excitation. As a physical picture of the ground state, the hexagon singlet solid state is proposed and verified by variational analysis.Comment: 5 pages, 7 eps figures, 2 tables, Fig. 4 correcte

    Recursion relations and branching rules for simple Lie algebras

    Full text link
    The branching rules between simple Lie algebras and its regular (maximal) simple subalgebras are studied. Two types of recursion relations for anomalous relative multiplicities are obtained. One of them is proved to be the factorized version of the other. The factorization property is based on the existence of the set of weights Γ\Gamma specific for each injection. The structure of Γ\Gamma is easily deduced from the correspondence between the root systems of algebra and subalgebra. The recursion relations thus obtained give rise to simple and effective algorithm for branching rules. The details are exposed by performing the explicit decomposition procedure for A3u(1)B4A_{3} \oplus u(1) \to B_{4} injection.Comment: 15p.,LaTe

    Dispersion for the Schr\"odinger Equation on Networks

    Get PDF
    In this paper we consider the Schr\"odinger equation on a network formed by a tree with the last generation of edges formed by infinite strips. We give an explicit description of the solution of the linear Schr\"odinger equation with constant coefficients. This allows us to prove dispersive estimates, which in turn are useful for solving the nonlinear Schr\"odinger equation. The proof extends also to the laminar case of positive step-function coefficients having a finite number of discontinuities.Comment: 16 pages, 2 figure
    corecore