The branching rules between simple Lie algebras and its regular (maximal)
simple subalgebras are studied. Two types of recursion relations for anomalous
relative multiplicities are obtained. One of them is proved to be the
factorized version of the other. The factorization property is based on the
existence of the set of weights Γ specific for each injection. The
structure of Γ is easily deduced from the correspondence between the
root systems of algebra and subalgebra. The recursion relations thus obtained
give rise to simple and effective algorithm for branching rules. The details
are exposed by performing the explicit decomposition procedure for A3⊕u(1)→B4 injection.Comment: 15p.,LaTe