1,558 research outputs found
Forced Imbibition - a Tool for Determining Laplace Pressure, Drag Force and Slip Length in Capillary Filling Experiments
When a very thin capillary is inserted into a liquid, the liquid is sucked
into it: this imbibition process is controlled by a balance of capillary and
drag forces, which are hard to quantify experimentally, in particularly
considering flow on the nanoscale. By computer experiments using a generic
coarse-grained model, it is shown that an analysis of imbibition forced by a
controllable external pressure quantifies relevant physical parameter such as
the Laplace pressure, Darcy's permeability, effective pore radius, effective
viscosity, dynamic contact angle and slip length of the fluid flowing into the
pore. In determining all these parameters independently, the consistency of our
analysis of such forced imbibition processes is demonstrated.Comment: 4 pages, 5 figure
A Mass Matrix for Atmospheric, Solar, and LSND Neutrino Oscillations
We construct a mass matrix for the four neutrino flavors, three active and
one sterile, needed to fit oscillations in all three neutrino experiments:
atmospheric, solar, and LSND, simultaneously. It organizes the neutrinos into
two doublets whose central values are about 1 eV apart, and whose splittings
are of the order of 10^(-3) eV. Atmospheric neutrino oscillations are described
as maximal mixing within the upper doublet, and solar as the same within the
lower doublet. Then LSND is a weak transition from one doublet to the other. We
comment on the Majorana versus Dirac nature of the active neutrinos and show
that our mass matrix can be derived from an S_2 x S_2 permutation symmetry plus
an equal splitting rule.Comment: 4 pages, 0 figures, minor text change
Does Young's equation hold on the nanoscale? A Monte Carlo test for the binary Lennard-Jones fluid
When a phase-separated binary () mixture is exposed to a wall, that
preferentially attracts one of the components, interfaces between A-rich and
B-rich domains in general meet the wall making a contact angle .
Young's equation describes this angle in terms of a balance between the
interfacial tension and the surface tensions ,
between, respectively, the - and -rich phases and the wall,
. By Monte Carlo simulations
of bridges, formed by one of the components in a binary Lennard-Jones liquid,
connecting the two walls of a nanoscopic slit pore, is estimated from
the inclination of the interfaces, as a function of the wall-fluid interaction
strength. The information on the surface tensions ,
are obtained independently from a new thermodynamic integration method, while
is found from the finite-size scaling analysis of the
concentration distribution function. We show that Young's equation describes
the contact angles of the actual nanoscale interfaces for this model rather
accurately and location of the (first order) wetting transition is estimated.Comment: 6 pages, 6 figure
Back reaction of a long range force on a Friedmann-Robertson-Walker background
It is possible that there may exist long-range forces in addition to gravity.
In this paper we construct a simple model for such a force based on exchange of
a massless scalar field and analyze its effect on the evolution of a
homogeneous Friedmann-Robertson-Walker cosmology. The presence of such an
interaction leads to an equation of state characterized by positive pressure
and to resonant particle production similar to that observed in preheating
scenarios.Comment: 14 pages, 6 color Postscript figures, LaTe
Floquet theory of neutrino oscillations in the earth
We review the Floquet theory of linear differential equations with periodic
coefficients and discuss its applications to neutrino oscillations in matter of
periodically varying density. In particular, we consider parametric resonance
in neutrino oscillations which can occur in such media, and discuss
implications for oscillations of neutrinos traversing the earth and passing
through the earth's core.Comment: LaTeX, 28 pages, 8 eps figures. Contribution to the special issue of
Yad. Fiz. dedicated to the memory of A.B. Migda
A Study of the Day - Night Effect for the Super - Kamiokande Detector: I. Time Averaged Solar Neutrino Survival Probability
This is the first of two articles aimed at providing comprehensive
predictions for the day-night (D-N) effect for the Super-Kamiokande detector in
the case of the MSW \nu_e \to \numt transition solution of the solar neutrino
problem. The one-year averaged probability of survival of the solar \nue
crossing the Earth mantle, the core, the inner 2/3 of the core, and the (core +
mantle) is calculated with high precision (better than 1%) using the elliptical
orbit approximation (EOA) to describe the Earth motion around the Sun. Results
for the survival probability in the indicated cases are obtained for a large
set of values of the MSW transition parameters and
from the ``conservative'' regions of the MSW solution,
derived by taking into account possible relatively large uncertainties in the
values of the B and Be neutrino fluxes. Our results show that the
one-year averaged D-N asymmetry in the survival probability for
neutrinos crossing the Earth core can be, in the case of , larger than the asymmetry in the probability for (only mantle
crossing + core crossing) neutrinos by a factor of up to six. The enhancement
is larger in the case of neutrinos crossing the inner 2/3 of the core. This
indicates that the Super-Kamiokande experiment might be able to test the
region of the MSW solution of the solar neutrino
problem by performing selective D-N asymmetry measurements.Comment: LaTeX2e - 18 Text Pages + 21 figures = 39 Pages. - Figures in PS +
text file sk1b14.tex requires two auxiliary files (included
Network analysis of a corpus of undeciphered Indus civilization inscriptions indicates syntactic organization
Archaeological excavations in the sites of the Indus Valley civilization
(2500-1900 BCE) in Pakistan and northwestern India have unearthed a large
number of artifacts with inscriptions made up of hundreds of distinct signs. To
date there is no generally accepted decipherment of these sign sequences and
there have been suggestions that the signs could be non-linguistic. Here we
apply complex network analysis techniques to a database of available Indus
inscriptions, with the aim of detecting patterns indicative of syntactic
organization. Our results show the presence of patterns, e.g., recursive
structures in the segmentation trees of the sequences, that suggest the
existence of a grammar underlying these inscriptions.Comment: 17 pages (includes 4 page appendix containing Indus sign list), 14
figure
Records, Writing, and Decipherment
Written records together with material remains derived from excavations form the main bases for our understanding of past civilizations and their underlying language systems. There is no systematic treatment of written records, and little attention has been paid to the interrelationship between ancient writing and language. Full systems of writing express language at two levels—morphological and phonetic—which give rise to three basic writing systems types—logo-syllabic, syllabic, and alphabetic. Four categories of decipherment—based on our relative knowledge of the writing system and the language—are discussed: known writing/known language; unknown writing/known language; known writing/unknown language; and unknown writing/unknown language. From a cryptanalytic point of view there are two general decipherment methods: 1) utilization of external information to determine probable contents (e.g., bilingual texts,) and 2) internal information from an analysis of the text itself (structure and typology). The assumption of the underlying language is critical for deciphering procedures and provides the test of successful decipherment
Lattice model of gas condensation within nanopores
We explore the thermodynamic behavior of gases adsorbed within a nanopore.
The theoretical description employs a simple lattice gas model, with two
species of site, expected to describe various regimes of adsorption and
condensation behavior. The model includes four hypothetical phases: a
cylindrical shell phase (S), in which the sites close to the cylindrical wall
are occupied, an axial phase (A), in which sites along the cylinder's axis are
occupied, a full phase (F), in which all sites are occupied, and an empty phase
(E). We obtain exact results at T=0 for the phase behavior, which is a function
of the interactions present in any specific problem. We obtain the
corresponding results at finite T from mean field theory. Finally, we examine
the model's predicted phase behavior of some real gases adsorbed in nanopores
- …
