1,558 research outputs found

    Forced Imbibition - a Tool for Determining Laplace Pressure, Drag Force and Slip Length in Capillary Filling Experiments

    Full text link
    When a very thin capillary is inserted into a liquid, the liquid is sucked into it: this imbibition process is controlled by a balance of capillary and drag forces, which are hard to quantify experimentally, in particularly considering flow on the nanoscale. By computer experiments using a generic coarse-grained model, it is shown that an analysis of imbibition forced by a controllable external pressure quantifies relevant physical parameter such as the Laplace pressure, Darcy's permeability, effective pore radius, effective viscosity, dynamic contact angle and slip length of the fluid flowing into the pore. In determining all these parameters independently, the consistency of our analysis of such forced imbibition processes is demonstrated.Comment: 4 pages, 5 figure

    A Mass Matrix for Atmospheric, Solar, and LSND Neutrino Oscillations

    Get PDF
    We construct a mass matrix for the four neutrino flavors, three active and one sterile, needed to fit oscillations in all three neutrino experiments: atmospheric, solar, and LSND, simultaneously. It organizes the neutrinos into two doublets whose central values are about 1 eV apart, and whose splittings are of the order of 10^(-3) eV. Atmospheric neutrino oscillations are described as maximal mixing within the upper doublet, and solar as the same within the lower doublet. Then LSND is a weak transition from one doublet to the other. We comment on the Majorana versus Dirac nature of the active neutrinos and show that our mass matrix can be derived from an S_2 x S_2 permutation symmetry plus an equal splitting rule.Comment: 4 pages, 0 figures, minor text change

    Does Young's equation hold on the nanoscale? A Monte Carlo test for the binary Lennard-Jones fluid

    Full text link
    When a phase-separated binary (A+BA+B) mixture is exposed to a wall, that preferentially attracts one of the components, interfaces between A-rich and B-rich domains in general meet the wall making a contact angle θ\theta. Young's equation describes this angle in terms of a balance between the ABA-B interfacial tension γAB\gamma_{AB} and the surface tensions γwA\gamma_{wA}, γwB\gamma_{wB} between, respectively, the AA- and BB-rich phases and the wall, γABcosθ=γwAγwB\gamma _{AB} \cos \theta =\gamma_{wA}-\gamma_{wB}. By Monte Carlo simulations of bridges, formed by one of the components in a binary Lennard-Jones liquid, connecting the two walls of a nanoscopic slit pore, θ\theta is estimated from the inclination of the interfaces, as a function of the wall-fluid interaction strength. The information on the surface tensions γwA\gamma_{wA}, γwB\gamma_{wB} are obtained independently from a new thermodynamic integration method, while γAB\gamma_{AB} is found from the finite-size scaling analysis of the concentration distribution function. We show that Young's equation describes the contact angles of the actual nanoscale interfaces for this model rather accurately and location of the (first order) wetting transition is estimated.Comment: 6 pages, 6 figure

    Back reaction of a long range force on a Friedmann-Robertson-Walker background

    Get PDF
    It is possible that there may exist long-range forces in addition to gravity. In this paper we construct a simple model for such a force based on exchange of a massless scalar field and analyze its effect on the evolution of a homogeneous Friedmann-Robertson-Walker cosmology. The presence of such an interaction leads to an equation of state characterized by positive pressure and to resonant particle production similar to that observed in preheating scenarios.Comment: 14 pages, 6 color Postscript figures, LaTe

    Floquet theory of neutrino oscillations in the earth

    Get PDF
    We review the Floquet theory of linear differential equations with periodic coefficients and discuss its applications to neutrino oscillations in matter of periodically varying density. In particular, we consider parametric resonance in neutrino oscillations which can occur in such media, and discuss implications for oscillations of neutrinos traversing the earth and passing through the earth's core.Comment: LaTeX, 28 pages, 8 eps figures. Contribution to the special issue of Yad. Fiz. dedicated to the memory of A.B. Migda

    A Study of the Day - Night Effect for the Super - Kamiokande Detector: I. Time Averaged Solar Neutrino Survival Probability

    Full text link
    This is the first of two articles aimed at providing comprehensive predictions for the day-night (D-N) effect for the Super-Kamiokande detector in the case of the MSW \nu_e \to \numt transition solution of the solar neutrino problem. The one-year averaged probability of survival of the solar \nue crossing the Earth mantle, the core, the inner 2/3 of the core, and the (core + mantle) is calculated with high precision (better than 1%) using the elliptical orbit approximation (EOA) to describe the Earth motion around the Sun. Results for the survival probability in the indicated cases are obtained for a large set of values of the MSW transition parameters Δm2\Delta m^2 and sin22θVsin^22\theta_{V} from the ``conservative'' regions of the MSW solution, derived by taking into account possible relatively large uncertainties in the values of the 8^{8}B and 7^{7}Be neutrino fluxes. Our results show that the one-year averaged D-N asymmetry in the νe\nu_e survival probability for neutrinos crossing the Earth core can be, in the case of sin22θV0.13sin^22 \theta_{V} \leq 0.13, larger than the asymmetry in the probability for (only mantle crossing + core crossing) neutrinos by a factor of up to six. The enhancement is larger in the case of neutrinos crossing the inner 2/3 of the core. This indicates that the Super-Kamiokande experiment might be able to test the sin22θV0.01sin^22\theta_{V} \leq 0.01 region of the MSW solution of the solar neutrino problem by performing selective D-N asymmetry measurements.Comment: LaTeX2e - 18 Text Pages + 21 figures = 39 Pages. - Figures in PS + text file sk1b14.tex requires two auxiliary files (included

    Network analysis of a corpus of undeciphered Indus civilization inscriptions indicates syntactic organization

    Full text link
    Archaeological excavations in the sites of the Indus Valley civilization (2500-1900 BCE) in Pakistan and northwestern India have unearthed a large number of artifacts with inscriptions made up of hundreds of distinct signs. To date there is no generally accepted decipherment of these sign sequences and there have been suggestions that the signs could be non-linguistic. Here we apply complex network analysis techniques to a database of available Indus inscriptions, with the aim of detecting patterns indicative of syntactic organization. Our results show the presence of patterns, e.g., recursive structures in the segmentation trees of the sequences, that suggest the existence of a grammar underlying these inscriptions.Comment: 17 pages (includes 4 page appendix containing Indus sign list), 14 figure

    Records, Writing, and Decipherment

    Get PDF
    Written records together with material remains derived from excavations form the main bases for our understanding of past civilizations and their underlying language systems. There is no systematic treatment of written records, and little attention has been paid to the interrelationship between ancient writing and language. Full systems of writing express language at two levels—morphological and phonetic—which give rise to three basic writing systems types—logo-syllabic, syllabic, and alphabetic. Four categories of decipherment—based on our relative knowledge of the writing system and the language—are discussed: known writing/known language; unknown writing/known language; known writing/unknown language; and unknown writing/unknown language. From a cryptanalytic point of view there are two general decipherment methods: 1) utilization of external information to determine probable contents (e.g., bilingual texts,) and 2) internal information from an analysis of the text itself (structure and typology). The assumption of the underlying language is critical for deciphering procedures and provides the test of successful decipherment

    The Inscription of Jibbiṭ-Lîm, King of Ebla

    Get PDF
    no abstrac

    Lattice model of gas condensation within nanopores

    Full text link
    We explore the thermodynamic behavior of gases adsorbed within a nanopore. The theoretical description employs a simple lattice gas model, with two species of site, expected to describe various regimes of adsorption and condensation behavior. The model includes four hypothetical phases: a cylindrical shell phase (S), in which the sites close to the cylindrical wall are occupied, an axial phase (A), in which sites along the cylinder's axis are occupied, a full phase (F), in which all sites are occupied, and an empty phase (E). We obtain exact results at T=0 for the phase behavior, which is a function of the interactions present in any specific problem. We obtain the corresponding results at finite T from mean field theory. Finally, we examine the model's predicted phase behavior of some real gases adsorbed in nanopores
    corecore