When a very thin capillary is inserted into a liquid, the liquid is sucked
into it: this imbibition process is controlled by a balance of capillary and
drag forces, which are hard to quantify experimentally, in particularly
considering flow on the nanoscale. By computer experiments using a generic
coarse-grained model, it is shown that an analysis of imbibition forced by a
controllable external pressure quantifies relevant physical parameter such as
the Laplace pressure, Darcy's permeability, effective pore radius, effective
viscosity, dynamic contact angle and slip length of the fluid flowing into the
pore. In determining all these parameters independently, the consistency of our
analysis of such forced imbibition processes is demonstrated.Comment: 4 pages, 5 figure