15 research outputs found

    Skeletal Muscle Pyruvate Dehydrogenase Phosphorylation and Lactate Accumulation During Sprint Exercise in Normoxia and Severe Acute Hypoxia: Effects of Antioxidants

    No full text
    Compared to normoxia, during sprint exercise in severe acute hypoxia the glycolytic rate is increased leading to greater lactate accumulation, acidification, and oxidative stress. To determine the role played by pyruvate dehydrogenase (PDH) activation and reactive nitrogen and oxygen species (RNOS) in muscle lactate accumulation, nine volunteers performed a single 30-s sprint (Wingate test) on four occasions: two after the ingestion of placebo and another two following the intake of antioxidants, while breathing either hypoxic gas (PIO2 = 75 mmHg) or room air (PIO2 = 143 mmHg). Vastus lateralis muscle biopsies were obtained before, immediately after, 30 and 120 min post-sprint. Antioxidants reduced the glycolytic rate without altering performance or VO2. Immediately after the sprints, Ser293- and Ser300-PDH-E1α phosphorylations were reduced to similar levels in all conditions (~66 and 91%, respectively). However, 30 min into recovery Ser293-PDH-E1α phosphorylation reached pre-exercise values while Ser300-PDH-E1α was still reduced by 44%. Thirty minutes after the sprint Ser293-PDH-E1α phosphorylation was greater with antioxidants, resulting in 74% higher muscle lactate concentration. Changes in Ser293 and Ser300-PDH-E1α phosphorylation from pre to immediately after the sprints were linearly related after placebo (r = 0.74, P < 0.001; n = 18), but not after antioxidants ingestion (r = 0.35, P = 0.15). In summary, lactate accumulation during sprint exercise in severe acute hypoxia is not caused by a reduced activation of the PDH. The ingestion of antioxidants is associated with increased PDH re-phosphorylation and slower elimination of muscle lactate during the recovery period. Ser293 re-phosphorylates at a faster rate than Ser300-PDH-E1α during the recovery period, suggesting slightly different regulatory mechanisms

    Functional reserve and sex differences during exercise to exhaustion revealed by post-exercise ischaemia and repeated supramaximal exercise

    No full text
    The purpose of this study was to ascertain what mechanisms explain sex differences at task failure and to determine whether males and females have a functional reserve at exhaustion. Exercise performance, cardiorespiratory variables, oxygen deficit, and brain and muscle oxygenation were determined in 18 males and 18 females (21–36 years old) in two sessions consisting of three bouts of constant-power exercise at 120% of VO2max until exhaustion interspaced by 20 s recovery periods. In one of the two sessions, the circulation of both legs was occluded instantaneously (300 mmHg) during the recovery periods. Females had a higher muscle O2 extraction during fatiguing supramaximal exercise than males. Metaboreflex activation, and lean mass-adjusted O2 deficit and debt were similar in males and females. Compared to males, females reached lower PETCO2 and brain oxygenation during supramaximal exercise, without apparent negative consequences on performance. After the occlusions, males and females were able to restart exercising at 120% of VO2max, revealing a similar functional reserve, which depends on glycolytic component of substrate-level phosphorylation and its rate of utilization. After ischaemia, muscle O2 extraction was increased, and muscle was similarly reduced in males and females. The physiological response to repeated supramaximal exercise to exhaustion is remarkably similar in males and females when differences in lean mass are considered. Both sexes fatigue with a large functional reserve, which depends on the glycolytic energy supply, yet females have higher oxygen extraction capacity, but reduced PETCO2 and brain oxygenation. Key points ‱ Females have lower fatigability than males during single limb isometric and dynamic contractions, but whether sex-differences exist during high-intensity whole-body exercise remains unknown. ‱ This study shows that males and females respond similarly to repeated supramaximal whole-body exercise, and that at task failure a large functional reserve remains in both sexes. ‱ Using post-exercise ischaemia with repeated exercise, we have shown that this functional reserve depends on the glycolytic component of substrate-level phosphorylation and is almost identical in both sexes. ‱ Metaboreflex activation during post-exercise ischaemia and the O2 debt per kg of active lean mass are also similar in males and females after supramaximal exercise. ‱ Females have a greater capacity to extract oxygen during repeated supramaximal exercise and reach lower PETCO2, experiencing a larger drop in brain oxygenation than males, without apparent negative repercussion on performance. ‱ Females had no faster recovery of performance after accounting for sex differences in lean mass

    Regulation of Nrf2/Keap1 signalling in human skeletal muscle during exercise to exhaustion in normoxia, severe acute hypoxia and post-exercise ischaemia: Influence of metabolite accumulation and oxygenation

    No full text
    The Nrf2 transcription factor is induced by reactive oxygen and nitrogen species and is necessary for the adaptive response to exercise in mice. It remains unknown whether Nrf2 signalling is activated by exercise in human skeletal muscle. Here we show that Nrf2 signalling is activated by exercise to exhaustion with similar responses in normoxia (PIO2: 143 mmHg) and severe acute hypoxia (PIO2: 73 mmHg). CaMKII and AMPKα phosphorylation were similarly induced in both conditions. Enhanced Nrf2 signalling was achieved by raising Nrf2 total protein and Ser40 Nrf2 phosphorylation, accompanied by a reduction of Keap1. Keap1 protein degradation is facilitated by the phosphorylation of p62/SQSTM1 at Ser349 by AMPK, which targets Keap1 for autophagic degradation. Consequently, the Nrf2-to-Keap1 ratio was markedly elevated and closely associated with a 2-3-fold increase in Catalase protein. No relationship was observed between Nrf2 signalling and SOD1 and SOD2 protein levels. Application of ischaemia immediately at the end of exercise maintained these changes, which were reverted within 1 min of recovery with free circulation. While SOD2 did not change significantly during either exercise or ischaemia, SOD1 protein expression was marginally downregulated and upregulated during exercise in normoxia and hypoxia, respectively. We conclude that Nrf2/Keap1/Catalase pathway is rapidly regulated during exercise and recovery in human skeletal muscle. Catalase emerges as an essential antioxidant enzyme acutely upregulated during exercise and ischaemia. Post-exercise ischaemia maintains Nrf2 signalling at the level reached at exhaustion and can be used to avoid early post-exercise recovery, which is O2-dependent

    A Single Dose of The Mango Leaf Extract ZynamiteÂź in Combination with Quercetin Enhances Peak Power Output During Repeated Sprint Exercise in Men and Women

    No full text
    The mango leaf extract rich in mangiferin Zynamite® improves exercise performance when combined with luteolin or quercetin ingested at least 48 h prior to exercise. To determine whether a single dose of Zynamite® administered 1 h before exercise increases repeated-sprint performance, 20 men and 20 women who were physically active were randomly assigned to three treatments following a double-blind cross-over counterbalanced design. Treatment A, 140 mg of Zynamite®, 140 mg of quercetin, 147.7 mg of maltodextrin, and 420 mg of sunflower lecithin; Treatment B, 140 mg of Zynamite®, 140 mg of quercetin, and 2126 mg of maltodextrin and Treatment C, 2548 mg of maltodextrin (placebo). Subjects performed three Wingate tests interspaced by 4 min and a final 15 s sprint after ischemia. Treatments A and B improved peak power output during the first three Wingates by 2.8% and 3.8%, respectively (treatment x sprint interaction, p = 0.01). Vastus Lateralis oxygenation (NIRS) was reduced, indicating higher O2 extraction (treatment × sprint interaction, p = 0.01). Improved O2 extraction was observed in the sprints after ischemia (p = 0.008; placebo vs. mean of treatments A and B). Blood lactate concentration was 5.9% lower after the ingestion of Zynamite® with quercetin in men (treatment by sex interaction, p = 0.049). There was a higher Vastus Lateralis O2 extraction during 60 s ischemia with polyphenols (treatment effect, p = 0.03), due to the greater muscle VO2 in men (p = 0.001). In conclusion, a single dose of Zynamite® combined with quercetin one hour before exercise improves repeated-sprint performance and muscle O2 extraction and mitochondrial O2. consumption during ischemia. No advantage was obtained from the addition of phospholipids

    Determinants of the maximal functional reserve during repeated supramaximal exercise by humans: The roles of Nrf2/Keap1, antioxidant proteins, muscle phenotype and oxygenation

    No full text
    When high-intensity exercise is performed until exhaustion a “functional reserve” (FR) or capacity to produce power at the same level or higher than reached at exhaustion exists at task failure, which could be related to reactive oxygen and nitrogen species (RONS)-sensing and counteracting mechanisms. Nonetheless, the magnitude of this FR remains unknown. Repeated bouts of supramaximal exercise at 120% of VO2max interspaced with 20s recovery periods with full ischaemia were used to determine the maximal FR. Then, we determined which muscle phenotypic features could account for the variability in functional reserve in humans. Exercise performance, cardiorespiratory variables, oxygen deficit, and brain and muscle oxygenation (near-infrared spectroscopy) were measured, and resting muscle biopsies were obtained from 43 young healthy adults (30 males). Males and females had similar aerobic (VO2max per kg of lower extremities lean mass (LLM): 166.7 ± 17.1 and 166.1 ± 15.6 ml kg LLM−1.min−1, P = 0.84) and anaerobic fitness (similar performance in the Wingate test and maximal accumulated oxygen deficit when normalized to LLM). The maximal FR was similar in males and females when normalized to LLM (1.84 ± 0.50 and 2.05 ± 0.59 kJ kg LLM−1, in males and females, respectively, P = 0.218). This FR depends on an obligatory component relying on a reserve in glycolytic capacity and a putative component generated by oxidative phosphorylation. The aerobic component depends on brain oxygenation and phenotypic features of the skeletal muscles implicated in calcium handling (SERCA1 and 2 protein expression), oxygen transport and diffusion (myoglobin) and redox regulation (Keap1). The glycolytic component can be predicted by the protein expression levels of pSer40-Nrf2, the maximal accumulated oxygen deficit and the protein expression levels of SOD1. Thus, an increased capacity to modulate the expression of antioxidant proteins involved in RONS handling and calcium homeostasis may be critical for performance during high-intensity exercise in humans

    Exercise mitigates the loss of muscle mass by attenuating the activation of autophagy during severe energy deficit

    No full text
    The loss of skeletal muscle mass with energy deficit is thought to be due to protein breakdown by the autophagy-lysosome and the ubiquitin-proteasome systems. We studied the main signaling pathways through which exercise can attenuate the loss of muscle mass during severe energy deficit (5500 kcal/day). Overweight men followed four days of caloric restriction (3.2 kcal/kg body weight day) and prolonged exercise (45 min of one-arm cranking and 8 h walking/day), and three days of control diet and restricted exercise, with an intra-subject design including biopsies from muscles submitted to distinct exercise volumes. Gene expression and signaling data indicate that the main catabolic pathway activated during severe energy deficit in skeletal muscle is the autophagy-lysosome pathway, without apparent activation of the ubiquitin-proteasome pathway. Markers of autophagy induction and flux were reduced by exercise primarily in the muscle submitted to an exceptional exercise volume. Changes in signaling are associated with those in circulating cortisol, testosterone, cortisol/testosterone ratio, insulin, BCAA, and leucine. We conclude that exercise mitigates the loss of muscle mass by attenuating autophagy activation, blunting the phosphorylation of AMPK/ULK1/Beclin1, and leading to p62/SQSTM1 accumulation. This includes the possibility of inhibiting autophagy as a mechanism to counteract muscle loss in humans under severe energy deficit.

    Enhancement of Exercise Performance by 48 Hours, and 15-Day Supplementation with Mangiferin and Luteolin in Men

    No full text
    The natural polyphenols mangiferin and luteolin have free radical-scavenging properties, induce the antioxidant gene program and down-regulate the expression of superoxide-producing enzymes. However, the effects of these two polyphenols on exercise capacity remains mostly unknown. To determine whether a combination of luteolin (peanut husk extract containing 95% luteolin, PHE) and mangiferin (mango leave extract (MLE), Zynamite®) at low (PHE: 50 mg/day; and 140 mg/day of MLE containing 100 mg of mangiferin; L) and high doses (PHE: 100 mg/day; MLE: 420 mg/day; H) may enhance exercise performance, twelve physically active men performed incremental exercise to exhaustion, followed by sprint and endurance exercise after 48 h (acute effects) and 15 days of supplementation (prolonged effects) with polyphenols or placebo, following a double-blind crossover design. During sprint exercise, mangiferin + luteolin supplementation enhanced exercise performance, facilitated muscle oxygen extraction, and improved brain oxygenation, without increasing the VO2. Compared to placebo, mangiferin + luteolin increased muscle O2 extraction during post-exercise ischemia, and improved sprint performance after ischemia-reperfusion likely by increasing glycolytic energy production, as reflected by higher blood lactate concentrations after the sprints. Similar responses were elicited by the two doses tested. In conclusion, acute and prolonged supplementation with mangiferin combined with luteolin enhances performance, muscle O2 extraction, and brain oxygenation during sprint exercise, at high and low doses

    Supplementation with a Mango Leaf Extract (ZynamiteÂź) in Combination with Quercetin Attenuates Muscle Damage and Pain and Accelerates Recovery after Strenuous Damaging Exercise

    No full text
    Prolonged or unusual exercise may cause exercise-induced muscle damage (EIMD). To test whether Zynamite®, a mango leaf extract rich in the natural polyphenol mangiferin, administered in combination with quercetin facilitates recovery after EIMD, 24 women and 33 men were randomly assigned to two treatment groups matched by sex and 5 km running performance, and ran a 10 km race followed by 100 drop jumps to elicit EIMD. One hour before the competition, and every 8 h thereafter for 24 h, they ingested placebo (728 mg of maltodextrin) or 140 mg of Zynamite® combined with 140 mg of quercetin (double-blind). Although competition times were similar, polyphenol supplementation attenuated the muscle pain felt after the competition (6.8 ± 1.5 and 5.7 ± 2.2 a.u., p = 0.035) and the loss of jumping performance (9.4 ± 11.5 and 3.9 ± 5.2%, p = 0.036; p = 0.034) and mechanical impulse (p = 0.038) 24 h later. The polyphenols attenuated the increase of serum myoglobin and alanine aminotransferase in men, but not in women (interaction p < 0.05). In conclusion, a single dose of 140 mg Zynamite® combined with 140 mg of quercetin, administered one hour before competition, followed by three additional doses every eight hours, attenuates muscle pain and damage, and accelerates the recovery of muscle performance
    corecore