55 research outputs found

    Paradoxical roles of antioxidant enzymes:Basic mechanisms and health implications

    Get PDF
    Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are generated from aerobic metabolism, as a result of accidental electron leakage as well as regulated enzymatic processes. Because ROS/RNS can induce oxidative injury and act in redox signaling, enzymes metabolizing them will inherently promote either health or disease, depending on the physiological context. It is thus misleading to consider conventionally called antioxidant enzymes to be largely, if not exclusively, health protective. Because such a notion is nonetheless common, we herein attempt to rationalize why this simplistic view should be avoided. First we give an updated summary of physiological phenotypes triggered in mouse models of overexpression or knockout of major antioxidant enzymes. Subsequently, we focus on a series of striking cases that demonstrate “paradoxical” outcomes, i.e., increased fitness upon deletion of antioxidant enzymes or disease triggered by their overexpression. We elaborate mechanisms by which these phenotypes are mediated via chemical, biological, and metabolic interactions of the antioxidant enzymes with their substrates, downstream events, and cellular context. Furthermore, we propose that novel treatments of antioxidant enzyme-related human diseases may be enabled by deliberate targeting of dual roles of the pertaining enzymes. We also discuss the potential of “antioxidant” nutrients and phytochemicals, via regulating the expression or function of antioxidant enzymes, in preventing, treating, or aggravating chronic diseases. We conclude that “paradoxical” roles of antioxidant enzymes in physiology, health, and disease derive from sophisticated molecular mechanisms of redox biology and metabolic homeostasis. Simply viewing antioxidant enzymes as always being beneficial is not only conceptually misleading but also clinically hazardous if such notions underpin medical treatment protocols based on modulation of redox pathways

    Typical investigational medicinal products follow relatively uniform regulations in 10 European Clinical Research Infrastructures Network (ECRIN) countries

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In order to facilitate multinational clinical research, regulatory requirements need to become international and harmonised. The EU introduced the Directive 2001/20/EC in 2004, regulating investigational medicinal products in Europe.</p> <p>Methods</p> <p>We conducted a survey in order to identify the national regulatory requirements for major categories of clinical research in ten European Clinical Research Infrastructures Network (ECRIN) countries-Austria, Denmark, France, Germany, Hungary, Ireland, Italy, Spain, Sweden, and United Kingdom-covering approximately 70% of the EU population. Here we describe the results for regulatory requirements for typical investigational medicinal products, in the ten countries.</p> <p>Results</p> <p>Our results show that the ten countries have fairly harmonised definitions of typical investigational medicinal products. Clinical trials assessing typical investigational medicinal products require authorisation from a national competent authority in each of the countries surveyed. The opinion of the competent authorities is communicated to the trial sponsor within the same timelines, i.e., no more than 60 days, in all ten countries. The authority to which the application has to be sent to in the different countries is not fully harmonised.</p> <p>Conclusion</p> <p>The Directive 2001/20/EC defined the term 'investigational medicinal product' and all regulatory requirements described therein are applicable to investigational medicinal products. Our survey showed, however, that those requirements had been adopted in ten European countries, not for investigational medicinal products overall, but rather a narrower category which we term 'typical' investigational medicinal products. The result is partial EU harmonisation of requirements and a relatively navigable landscape for the sponsor regarding typical investigational medicinal products.</p

    Full-Length L1CAM and Not Its Δ2Δ27 Splice Variant Promotes Metastasis through Induction of Gelatinase Expression

    Get PDF
    Tumour-specific splicing is known to contribute to cancer progression. In the case of the L1 cell adhesion molecule (L1CAM), which is expressed in many human tumours and often linked to bad prognosis, alternative splicing results in a full-length form (FL-L1CAM) and a splice variant lacking exons 2 and 27 (SV-L1CAM). It has not been elucidated so far whether SV-L1CAM, classically considered as tumour-associated, or whether FL-L1CAM is the metastasis-promoting isoform. Here, we show that both variants were expressed in human ovarian carcinoma and that exposure of tumour cells to pro-metastatic factors led to an exclusive increase of FL-L1CAM expression. Selective overexpression of one isoform in different tumour cells revealed that only FL-L1CAM promoted experimental lung and/or liver metastasis in mice. In addition, metastasis formation upon up-regulation of FL-L1CAM correlated with increased invasive potential and elevated Matrix metalloproteinase (MMP)-2 and -9 expression and activity in vitro as well as enhanced gelatinolytic activity in vivo. In conclusion, we identified FL-L1CAM as the metastasis-promoting isoform, thereby exemplifying that high expression of a so-called tumour-associated variant, here SV-L1CAM, is not per se equivalent to a decisive role of this isoform in tumour progression

    Derivation of oocyte-like cells from a clonal pancreatic stem cell line

    No full text
    Adult pancreatic stem cells (PSCs) are able to differentiate spontaneously in vitro into various somatic cell types. Stem cells isolated from rat pancreas show extensive self-renewal ability and grow in highly viable long-term cultures. Additionally, these cells express typical stem cell markers such as Oct-4, nestin and SSEA-1. Although differentiation potential is slightly decreasing in long-term cultures, it is possible to keep cell lines up to passage 140. Clonal cell lines could be established from different passages and showed similar characteristics. Remarkably, one clonal cell line, generated from passage 75, showed deviant properties during further culture. Clonal cells formed aggregates, which built tissue-like structures in suspension culture. These generated 3D aggregates produced permanently new cells at the outside margin. Released cells had remarkable size, and closer examination by light microscopy analysis revealed oocyte-like morphology. A comparison of the gene expression patterns between primary cultures of passages 8 and 75, the clonal cell line and the produced oocyte-like cells (OLCs) from tissue-like structures demonstrated some differences. Expression of various germ cell markers, such as Vasa, growth differentiation marker 9 and SSEA-1, increased in the clonal cell line, and OLCs showed additionally expression of meiosis-specific markers SCP3 and DMC1. We here present a first pilot study investigating the putative germ line potential of adult PSCs

    Derivation of oocyte-like cells from a clonal pancreatic stem cell line

    No full text
    corecore