7,030 research outputs found

    Bosentan therapy for chronic thromboembolic pulmonary hypertension. A national open label study assessing the effect of Bosentan on haemodynamics, exercise capacity, quality of life, safety and tolerability in patients with chronic thromboembolic pulmonary hypertension (BOCTEPH-Study).

    Get PDF
    we performed an open-label national study to evaluate the effects of Bosentan on haemodynamics, exercise capacity, quality of life, safety and tolerability in patients with chronic thromboembolic pulmonary hypertension (CTEPH). fifteen patients with CTEPH not eligible or waiting for surgery were enrolled. The primary endpoint was the change in pulmonary vascular resistance (PVR). Secondary endpoints included quality of life (measured by the Minnesota living with heart failure questionnaire, MLHF), 6 minute walk distance (6MWD), World Health Organization (WHO) functional class, Borg dyspnoea scale, plasma endothelin, serum values of disease severity such as uric acid, N-terminal-pro brain natriuretic peptide (NTproBNP), C-reactive protein measured by a highly sensitive method (CRPs) and other serum and haemodynamic parameters. after six months of treatment with bosentan, the PVR decreased from 852 (319) to 657(249) dyn*s*m-5 (p = 0.02). Quality of life considerably improved from a mean total score of 48(14) to 35(17) (p = 0.003) with improvements in the physical (from 25(5) to 17(7)) and emotional (from 11(6) to 6(5)) subscores (p = 0.005 and 0.011), respectively. The 6MWD improved from 389(78) to 443(79) meters (p = 0.005). 4 patients (27%) improved and 11 patients (73%) maintained their WHO class with no deterioration during the six months of bosentan treatment (p = 0.02). Uric acid serum levels declined from 525(145) to 453(151) micromol/l (p = 0.006), NTproBNP and CRPs declined insignificantly. Endothelin serum levels increased from 4.3(1.5) to 5.9(2.2) pg/ml (p = 0.025). Patients tolerated the treatment well, and there were no severe adverse events or deaths. this open-label study suggests a beneficial effect of bosentan therapy not only on pulmonary haemodynamics, but also on quality of life and exercise capacity for patients with severe CTEPH

    Can hibernators sense and evade fires? Olfactory acuity and locomotor performance during deep torpor.

    Get PDF
    Increased habitat fragmentation, global warming and other human activities have caused a rise in the frequency of wildfires worldwide. To reduce the risks of uncontrollable fires, prescribed burns are generally conducted during the colder months of the year, a time when in many mammals torpor is expressed regularly. Torpor is crucial for energy conservation, but the low body temperatures (T b) are associated with a decreased responsiveness and torpid animals might therefore face an increased mortality risk during fires. We tested whether hibernators in deep torpor (a) can respond to the smell of smoke and (b) can climb to avoid fires at T bs below normothermic levels. Our data show that torpid eastern pygmy-possums (Cercartetus nanus) are able to detect smoke and also can climb. All males aroused from torpor when the smoke stimulus was presented at an ambient temperature (T a) of 15 °C (T b ∼18 °C), whereas females only raised their heads. The responses were less pronounced at T a 10 °C. The first coordinated movement of possums along a branch was observed at a mean T b of 15.6 °C, and animals were even able to climb their prehensile tail when they reached a mean T b of 24.4 °C. Our study shows that hibernators can sense smoke and move at low T b. However, our data also illustrate that at T b ≤13 °C, C. nanus show decreased responsiveness and locomotor performance and highlight that prescribed burns during winter should be avoided on very cold days to allow torpid animals enough time to respond

    Coherent vs incoherent interlayer transport in layered metals

    Get PDF
    The magnetic-field, temperature, and angular dependence of the interlayer magnetoresistance of two different quasi-two-dimensional (2D) organic superconductors is reported. For κ\kappa-(BEDT-TTF)2_2I3_3 we find a well-resolved peak in the angle-dependent magnetoresistance at Θ=90\Theta = 90^\circ (field parallel to the layers). This clear-cut proof for the coherent nature of the interlayer transport is absent for β\beta''-(BEDT-TTF)2_2SF5_5CH2_2CF2_2SO3_3. This and the non-metallic behavior of the magnetoresistance suggest an incoherent quasiparticle motion for the latter 2D metal.Comment: 4 pages, 4 figures. Phys. Rev. B, in pres

    Torpor in marsupials: Recent advances

    Get PDF
    We report new findings about torpor in marsupials with regard to three energy demanding processes: (i) development and growth, (ii) reproduction, and (iii) rewarming. Young marsupials use torpor extensively after they develop endothermy, and torpor is generally deeper and longer than in the same individuals when they reach adult size. Adult marsupials also employ torpor during pregnancy and/or lactation to reduce energy expenditure and perhaps to store fat for later use. Moreover, to enhance the energy-conserving potential of torpor, desert marsupials bask during arousal to minimize energy costs of rewarming. We show that the functions of torpor extend beyond merely reducing energy expenditure during food shortages and that torpor can save substantial amounts of energy even during the rewarming process

    Pseudo-Dirac Scenario for Neutrino Oscillations

    Get PDF
    We argue how pseudo-Dirac scenario for neutrinos leads to rich neutrino oscillation phenomena, including oscillation inside each generation. The pseudo-Dirac scenario is generalized by incorporating generation mixings and formulae for the various neutrino oscillations are derived. As the application we compare the formulae with the corresponding data. We find that observed pattern of mixings, such as almost maximal mixing in the atmospheric neutrino oscillation, is naturally explained in the generalized Pseudo-Dirac scenario with small generation mixings. We, however, also point out that there remain some problems to be settled for this scenario to be viable. The possible theoretical framework to realize the pseudo-Dirac scenario is also briefly commented on.Comment: 17 pages, LaTeX fil

    The coupling of low-level auditory dysfunction and oxidative stress in psychosis patients.

    Get PDF
    Patients diagnosed with schizophrenia often present with low-level sensory deficits. It is an open question whether there is a functional link between these deficits and the pathophysiology of the disease, e.g. oxidative stress and glutathione (GSH) metabolism dysregulation. Auditory evoked potentials (AEPs) were recorded from 21 psychosis disorder patients and 30 healthy controls performing an active, auditory oddball task. AEPs to standard sounds were analyzed within an electrical neuroimaging framework. A peripheral measure of participants' redox balance, the ratio of glutathione peroxidase and glutathione reductase activities (GPx/GR), was correlated with the AEP data. Patients displayed significantly decreased AEPs over the time window of the P50/N100 complex resulting from significantly weaker responses in the left temporo-parietal lobe. The GPx/GR ratio significantly correlated with patients' brain activity during the time window of the P50/N100 in the medial frontal lobe. We show for the first time a direct coupling between electrophysiological indices of AEPs and peripheral redox dysregulation in psychosis patients. This coupling is limited to stages of auditory processing that are impaired relative to healthy controls and suggests a link between biochemical and sensory dysfunction. The data highlight the potential of low-level sensory processing as a trait-marker of psychosis

    Optimal use of time dependent probability density data to extract potential energy surfaces

    Get PDF
    A novel algorithm was recently presented to utilize emerging time dependent probability density data to extract molecular potential energy surfaces. This paper builds on the previous work and seeks to enhance the capabilities of the extraction algorithm: An improved method of removing the generally ill-posed nature of the inverse problem is introduced via an extended Tikhonov regularization and methods for choosing the optimal regularization parameters are discussed. Several ways to incorporate multiple data sets are investigated, including the means to optimally combine data from many experiments exploring different portions of the potential. Results are presented on the stability of the inversion procedure, including the optimal combination scheme, under the influence of data noise. The method is applied to the simulated inversion of a double well system.Comment: 34 pages, 5 figures, LaTeX with REVTeX and Graphicx-Package; submitted to PhysRevA; several descriptions and explanations extended in Sec. I

    Impurity Effect on the In-plane Penetration Depth of the Organic Superconductors κ\kappa-(BEDT-TTF)2X_2X (XX = Cu(NCS)2_2 and Cu[N(CN)2_2]Br)

    Full text link
    We report the in-plane penetration depth λ\lambda_{\parallel} of single crystals κ\kappa-(BEDT-TTF)2X_2X (X=X= Cu(NCS)2_2 and Cu[N(CN)2_2]Br) by means of the reversible magnetization measurements under the control of cooling-rate. In XX = Cu(NCS)2_2, λ(0)\lambda_{\parallel}(0) as an extrapolation toward TT = 0 K does not change by the cooling-rate within the experimental accuracy, while TcT_{\textrm{c}} is slightly reduced. On the other hand, in XX = Cu[N(CN)2_2]Br, λ(0)\lambda_{\parallel}(0) indicates a distinct increase by cooling faster. The different behavior of λ(0)\lambda_{\parallel}(0) on cooling-rate between the two salts is quantitatively explained in terms of the local-clean approximation (London model), considering that the former salt belongs to the very clean system and the later the moderate clean one. The good agreement with this model demonstrates that disorders of ethylene-group in BEDT-TTF introduced by cooling faster increase the electron(quasiparticle)-scattering, resulting in shorter mean free path.Comment: 8 pages, 9 figure

    Implications of mirror neutrinos for early universe cosmology

    Get PDF
    The Exact Parity Model (EPM) is, in part, a theory of neutrino mass and mixing that can solve the atmospheric, solar and LSND anomalies. The central feature of the neutrino sector is three pairs of maximally mixed ordinary and mirror neutrinos. It has been shown that ordinary-mirror neutrino oscillations can generate large neutrino asymmetries in the epoch of the early universe immediately prior to Big Bang Nucleosynthesis (BBN). The large neutrino asymmetries generically suppress the production of mirror neutrinos, and a sufficiently large νe\nu_e asymmetry can directly affect light element synthesis through nuclear reaction rates. In this paper we present a detailed calculation of neutrino asymmetry evolution driven by the six-flavour EPM neutrino sector, focusing on implications for BBN.Comment: Latex, about 55 pages long with some figure
    corecore