207 research outputs found

    Optimization of on-line hydrogen stable isotope ratio measurements of halogen- and sulfur-bearing organic compounds using elemental analyzer–chromium/high-temperature conversion isotope ratio mass spectrometry (EA-Cr/HTC-IRMS)

    No full text
    RATIONALE: Accurate hydrogen isotopic analysis of halogen- and sulfur-bearing organics has not been possible with traditional high-temperature conversion (HTC) because the formation of hydrogen-bearing reaction products other than molecular hydrogen (H 2 ) is responsible for non-quantitative H 2 -yields and possible hydrogen isotopic fractionation. Our previously introduced, new chromium-based EA-Cr/HTC-IRMS (Elemental Analyzer – Chromium/High Temperature Conversion – Isotope-Ratio Mass Spectrometry) technique focused primarily on nitrogen-bearing compounds. Several technical and analytical issues concerning halogen- and sulfur-bearing samples, however, remained unresolved and required further refinement of the reactor systems. METHODS: The EA-Cr/HTC reactor was substantially modified for the conversion of halogen- and sulfur-bearing samples. The performance of the novel conversion setup for solid and liquid samples was monitored and optimized using a simultaneously operating dual- detection system of IRMS and ion trap MS. The method with several variants in the reactor, including the addition of manganese metal chips, was evaluated in three laboratories using EA-Cr/HTC-IRMS (on-line method) and compared with traditional uranium-reduction-based conversion combined with manual dual-inlet IRMS analysis (off-line method) in one laboratory. RESULTS: The modified EA-Cr/HTC reactor setup showed an overall H 2 -recovery of more than 96 % for all halogen- and sulfur-bearing organic compounds. All results were successfully normalized via 2-point calibration with VSMOW-SLAP reference waters. Precise and accurate hydrogen isotopic analysis was achieved for a variety of organics containing F-, Cl-, Br-, I-, and S-bearing heteroelements. The robust nature of the on-line EA-Cr/HTC technique was demonstrated by a series of 196 consecutive measurements with a single reactor filling. CONCLUSIONS: The optimized EA-Cr/HTC reactor design can be implemented in existing analytical equipment using commercially available material and is universally applicable for both heteroelement-bearing and heteroelement-free organic-compound classes. The sensitivity and simplicity of the on-line EA-Cr/HTC-IRMS technique provide a much needed tool for routine hydrogen-isotope source tracing of organic contaminants in the environment

    Neighbourhood species richness and drought-tolerance traits modulate tree growth and delta<sup>13</sup>C responses to drought

    Get PDF
    International audienceMixed-species forests are promoted as a forest management strategy for climate change adaptation, but whether they are more resistant to drought than monospecific forests remains contested. In particular, the trait-based mechanisms driving the role of tree diversity under drought remain elusive. Using tree cores from a large-scale biodiversity experiment, we investigated tree growth and physiological stress responses (i.e. increase in wood carbon isotopic ratio; delta C-13) to changes in climate-induced water availability (wet to dry years) along gradients in neighbourhood tree species richness and drought-tolerance traits. We hypothesized that neighbourhood species richness increases growth and decreases delta C-13 and that these relationships are modulated by the abiotic (i.e. climatic conditions) and the biotic context. We characterised the biotic context using drought-tolerance traits of focal trees and their neighbours. These traits are related to cavitation resistance versus resource acquisition and stomatal control.Tree growth increased with neighbourhood species richness. However, we did not observe a universal relief of water stress in species-rich neighbourhoods. The effects of neighbourhood species richness and climate on growth and delta C-13 were modulated by the traits of focal trees and the traits of their neighbours. At either end of each drought-tolerance gradient, species responded in opposing directions during dry and wet years.We show that species' drought-tolerance traits can explain the strength and nature of biodiversity-ecosystem functioning relationships in experimental tree communities experiencing drought. Mixing tree species can increase growth but may not universally relieve drought stress

    Zur colorimetrischen Bestimmung von Rhenium in Naturstoffen

    No full text

    Zur Bestimmung kleinster Mengen Jod in Salzen

    No full text
    corecore