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Fig. S1 Climate-based characterisation of the study years 2016 (wet), 2017 (intermediate) and 

2018 (dry). Shown are standardised climatic water balances calculated based on the standardised 

precipitation evapotranspiration index (SPEI) (Vicente-Serrano, Beguería, & López-Moreno, 

2010) calculated from a high-resolution time-series of interpolated climate station data (CRU TS 

v4.04; Harris, Osborn, Jones, & Lister, 2020). SPEIs are compared for the three months of the 

peak vegetation period (SPEI3, April-July) for the six months of the entire vegetation period 

(SPEI6, April-September) and the twelve months of a whole year since the end of the vegetation 

period of the preceding year (SPEI12, October-September), since the establishment of the BEF-

China experiment (2009). The wet-to-dry study years are highlighted with a red circle. Blue points 

indicate wetter and red points drier conditions than the long-term mean (1901-2019); values below 

-1 and above 1 can be considered exceptional.  

 

 



 
Fig. S2 A long-term perspective on standardized climatic water balances at our study site. Shown 

are values of the standardised precipitation evapotranspiration index (SPEI) for the principal 

vegetation period (April-September). For further details on the underlying data and SPEI 

calculation see methods and Fig.S1. 

 

 



 
Fig. S3 Intra-annual climatic water balances at our study site. Shown are (A) values of the 

standardised precipitation evapotranspiration index (SPEI) and (B) non-standardized water 

balances of precipitation minus potential evapotranspiration (PET) for each month for the study 

years 2016-2018. For further details on the underlying data and SPEI calculation see methods and 

Fig.S1. 

 

 



 
Fig. S4 Wood anatomy of the 15 tree species sampled in this study. Shown are photographs of 

exemplary cores per species and experimental site (see Table S1 for details on the species). Capital 

letters show the leaf habit (evergreen (E) and deciduous (D)) and lower-case letters wood porosity 

(ring porous (r), diffuse porous (d) and semi-ring porous (s)). Photographs were taken after surface 

preparation with a core microtome (Gärtner & Nievergelt, 2010). 

 

 

 

 

 

 



 
Fig. S5 Comparison of focal tree tree-ring width (trw, mm) and basal area increment (bai, cm2) 

series. 

 

 

 

 

 

 



 
Fig. S6 Species-specific variability in focal tree growth (expressed as basal area increment, bai) 

and δ13C in wood of focal trees per year and neighbourhood species richness (NSR) level. Coloured 

lines show mean values for each of the 15 studied species. Species identity is shown as species 

code; see species list in Table S1. The black line represents the fit of a simple linear regression 

across species to visualize overall trends; grey bands show a 95% confidence interval. 

 

 

 

 

 

 

 

 

 



 
Fig. S7 Effect of study year on δ13C in wood of focal trees. The blue line is a linear mixed-effects 

model fit and the grey band shows a 95% confidence interval. See Table S6 for details on the fitted 

model. 

 

 

 

 

 

 

 

 

 

 



 
Fig. S8 Modulation of the relationship between neighbourhood species richness (NSR), climate 

and growth by resistance-acquisition traits. Lines represent linear mixed-effects model fits and 

coloured bands show a 95% confidence interval. The models depict marginally significant, 

interactive effects of NSR and study year (2016-2018 with wet-to-dry climate, SPEI values in 

brackets) on growth of focal trees predicted for cavitation resistant (PC1 value of -1.5) and for 

acquisitive focal trees (PC1 value of 1.5). See Fig. 1 for details on the study design and Table S10 

for details on the fitted model. 

 

 



 
Fig. S9 Effects of tree size (dbh), neighbourhood competition (Hegyi index), neighbourhood 

species richness (NSR) and study year on the logarithm of tree-ring width (trwstd) of focal trees. 

The blue lines are linear mixed-effects model fits and the grey bands show a 95% confidence 

interval.  

 

 



 
Fig. S10 Modulation of the relationship between neighbourhood species richness (NSR), climate 

and growth by resistance-acquisition traits using tree-ring width (trwstd) of focal trees instead of 

basal area increment (baistd) as indicator of growth. Lines represent linear mixed-effects model fits 

and coloured bands show a 95% confidence interval. The model depicts significant, interactive 

effects of NSR and study year (2016-2018 with wet-to-dry climate, SPEI values in brackets) on 

growth predicted for cavitation resistant (PC1 value of -1.5) and for acquisitive focal trees (PC1 

value of 1.5) (NSR × year × focal tree resistance-acquisition traits, t = -2.21, P = 0.027). See Fig. 

1 for details on the study design. 

 

 

 

 

 

 

 

 

 

 

 



 
Fig. S11 Modulation of the relationship between climate and growth by the neighbourhood-

weighted mean (NWM) of resistance-acquisition traits using tree-ring width (trwstd) of focal trees 

instead of basal area increment (baistd) as indicator of growth. Lines represent linear mixed-effects 

model fits and coloured bands show a 95% confidence interval. The model depicts a significant 

effect of study year (2016-2018 with wet-to-dry climate, SPEI values in brackets) on the logarithm 

of trwstd predicted for a neighbourhood dominated by cavitation resistant (PC1 value of -1.5) and 

acquisitive species (PC1 value of 1.5) (year × NWM resistance-acquisition, t = -2.90, P = 0.004). 

See Fig. 1 for details on the study design. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
Fig. S12 Modulation of the relationship between climate and δ13C by the neighbourhood-weighted 

mean (NWM) of stomatal control traits. Lines represent linear mixed-effects model fits and 

coloured bands show a 95% confidence interval. The model depicts a significant effect of study 

year (2016-2018 with wet-to-dry climate, SPEI values in brackets) on δ13C in wood of focal trees 

predicted for a water saver (PC2 value of -1.5) and for a water spender (PC2 value of 1.0) 

dominated neighbourhood. The sketch illustrates that the NWM of stomatal control traits (tree 

neighbourhood) modulates the relationship. See Fig. 1 for details on the study design and Table 

S16 for details on the fitted model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Table S1 The 40 broadleaved evergreen and deciduous tree species planted in BEF-China  

Species names Family Species code Leaf habit  Site 

Acer davidii Sapindaceae 27 D  A 

Ailanthus altissima Simaroubaceae 29 D  B 

Alniphyllum fortunei Styracaceae 30 D  B 

Betula luminifera Betulaceae 31 D  B 

Castanea henryi Fagaceae 1 D  A 

Castanopsis carlesii Fagaceae 10 E  A 

Castanopsis eyrei Fagaceae 13 E  AB 

Castanopsis fargesii Fagaceae 32 E  B 

Castanopsis sclerophylla Fagaceae 14 E  AB 

Celtis biondii Cannabaceae 33 D  B 

Choerospondias axillaris Anacardiaceae 4 D  A 

Cinnamomum camphora Lauraceae 17 E  AB 

Cyclobalanopsis glauca Fagaceae 11 E  AB 

Cyclobalanopsis myrsinifolia Fagaceae 9 E  A 

Daphniphyllum oldhamii Daphniphyllaceae 16 E  AB* 

Diospyros japonica Ebenaceae 15 D  AB 

Elaeocarpus chinensis Elaeocarpaceae 34 E  B 

Elaeocarpus glabripetalus Elaeocarpaceae 35 E  B 

Elaeocarpus japonicus Elaeocarpaceae 36 E  B 

Idesia polycarpa Salicaceae 37 D  B 

Koelreuteria bipinnata Sapindaceae 18 D  A 

Liquidambar formosana Altingiaceae 6 D  A 

Lithocarpus glaber Fagaceae 12 E  A*B 

Machilus grijsii Lauraceae 39 E  B 

Machilus leptophylla Lauraceae 41 E  B 

Machilus thunbergii Lauraceae 40 E  B 

Manglietia fordiana Magnoliaceae 42 E  B 

Melia azedarach Meliaceae 26 D  A 

Meliosma flexuosa Sabiaceae 38 D  B 

Nyssa sinensis Cornaceae 20 D  A 

Phoebe bournei Lauraceae 43 E  B 

Quercus acutissima Fagaceae 25 D  A 

Quercus fabri Fagaceae 24 D  A 

Quercus phillyreoides Fagaceae 44 E  B 

Quercus serrata Fagaceae 8 D  A 

Rhus chinensis Anacardiaceae 23 D  A 

Sapindus saponaria Sapindaceae 19 D  A 

Triadica cochinchinensis Euphorbiaceae 22 D  A 

Triadica sebifera Euphorbiaceae 21 D  A 

Schima superba Theaceae 3 E  A*B* 

Note: Species from which tree cores were extracted are highlighted in bold (see Fig. 1 for the 

species selection). Shown are species and family names, the species identity codes used in Fig. 1, 



leaf habit (E, evergreen; D, Deciduous) and the site at which the species were planted. In case of 

species planted at both sites, asterisks indicate at which site the species was sampled. For more 

details on the tree species taxonomy, their characteristics and the experimental design see 

Bruelheide et al., 2014; Huang et al., 2018. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table S2 Resistance-acquisition and stomatal control traits were used in this study (adapted from 

Schnabel et al., 2021).  

Abbreviation Trait description Unit 

50 Water potential at which 50% initial conductivity is lost MPa 

SLA Specific leaf area m2 kg-1 

LEAFT Leaf toughness N mm-1 

CN Carbon to nitrogen ratio Ratio 

CONMAXFIT Modelled maximum stomatal conductance Non-dimensional 

STOMDENS Stomatal density 1 mm-2 

STOIND Product of STODENS and stomatal size in µm2 ratio 

VPDMAXFIT Vapor pressure deficit (VPD) at CONMAXFIT hPA 

VPDPOI VPD at the point of inflection of modelled stomatal 

conductance 

hPA 

Note: Traits were measured in the BEF-China experiment and were used to calculate species level 

mean trait values by Kröber and Bruelheide (2014) and Kröber, Zhang, Ehmig, and Bruelheide 

(2014). See these studies and Schnabel et al. (2021) for detailed information on the individual traits 

and the two orthogonal drought-tolerance trait gradients they represent. Stomatal sensitivity is 

inferred here from modelled gs~VPD curves through extracting the point at which a species starts 

to lower its stomatal conductance (the VPD at maximum stomatal conductance, VPDMAXFIT) 

and the point where the slope of the curve turns from positive to negative (VPDPOI), which is a 

measure of how fast stomatal close under increasing VPD.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table S3 Description of competition indices. 

Index Description 
nhigher Number of neighbours higher than the focal tree 

relbah Basal area of neighbours higher than the focal tree 

relbab Basal area of neighbours with higher basal area than the focal tree 

hegyi Hegyi index including all neighbours  

hegyih Hegyi index of neighbours higher than the focal tree 

hegyib Hegyi index of neighbours with higher basal area than the focal tree 

hcom Summed height of neighbours relative to the focal tree 

Notes: We modelled distance depended competition effects of neighbouring trees on focal trees 

using the Hegyi index (e.g. Mailly, Turbis, & Pothier, 2003) with the following formula when 

including all neighbours: ℎ𝑒𝑔𝑦𝑖 =  ∑ 𝑏𝑎𝑐
𝑏𝑎𝑡

 ∗ 
1

𝑑𝑡𝑐

𝑛
 𝑐 = 1 ; where ba is the basal area of either the focal 

tree t or its competitor c and dtc the distance between focal tree and neighbour. We subsequently 

adjusted this formula to only include those neighbours higher than the focal tree or those with a 

higher basal area than the focal tree. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table S4 Best-fitting trait-independent linear mixed-effects model after model selection. 

  log(baistd) 

Predictors Estimates CI Statistic p df 

(Intercept) -0.19 -0.29 – -0.10 -4.18 <0.001 119.74 

dbh  0.10 0.06 – 0.14 5.01 <0.001 273.26 

hegyi -0.12 -0.15 – -0.08 -5.91 <0.001 328.58 

NSR 0.04 0.01 – 0.08 2.29 0.024 120.00 

Random Effects 

σ2 0.09 

τ00 tag:(plot_no:site) 0.07 

τ00 plot_no:site 0.02 

ICC 0.51 

N tag 336 

N plot_no 114 

N site 2 

Observations 1008 

Marginal R2 / Conditional R2 0.155 / 0.585 

Note: Significant fixed effects printed in bold. Linear mixed-effects models (LMMs) fit with the 

packages lme4 (Bates, Mächler, Bolker, & Walker, 2015) and lmerTest (Kuznetsova, Brockhoff, 

& Christensen, 2017) in R using restricted maximum likelihood estimation (REML) and an α of 

0.05 for reporting significant effects. Model tables including fixed and random effects as well as R2 

values were created using the sjPlot package (see Lüdecke (2021) for details). The model statistics, 

p-values, standard errors and confidence intervals (CI; 95%) were computed using Satterthwaite’s 

approximation for degrees of freedom. ‘Plot no’ is the plot identifier and ‘tag’ the tree identifier. 

All analyses were conducted in R version 4.1.2 (R Core Team, 2021). 

 

 

 

 

 

 

 

 

 

 

 

 



Table S5 Comparison of competition indices (Table S3) for the growth linear mixed-effects model 

(Table S4) against a null model without a competition index. 

Model npar AIC BIC logLik deviance Chisq Df Pr(>Chisq) 

null 6 912.56 942.05 -450.28 900.56 NA NA NA 

nhigher 7 914.23 948.64 -450.11 900.23 0.33 1 0.57 

relbah 7 913.18 947.59 -449.59 899.18 1.05 0 NA 

relbab 7 904.85 939.26 -445.43 890.85 8.33 0 NA 

hegyi 7 880.98 915.39 -433.49 866.98 23.87 0 NA 

hegyih 7 909.19 943.6 -447.59 895.19 0 0 NA 

hegyib 7 890.65 925.06 -438.32 876.65 18.54 0 NA 

hcom 7 914.14 948.55 -450.07 900.14 0 0 NA 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table S6 Best-fitting trait-independent linear mixed-effects model after model selection. 

  Δδ13C 

Predictors Estimates CI Statistic p df 

(Intercept) 0.28 0.19 – 0.37 5.89 <0.001 256.95 

year int -0.14 -0.17 – -0.11 -9.06 <0.001 671.00 

Random Effects 

σ2 0.16 

τ00 tag:(plot_no:site) 0.29 

τ00 plot_no:site 0.03 

ICC 0.67 

N tag 336 

N plot_no 114 

N site 2 

Observations 1008 

Marginal R2 / Conditional R2 0.026 / 0.683 

Note: Significant fixed effects printed in bold. Linear mixed-effects models (LMMs) fit with the 

packages lme4 (Bates et al., 2015) and lmerTest (Kuznetsova et al., 2017) in R using restricted 

maximum likelihood estimation (REML) and an α of 0.05 for reporting significant effects. Model 

tables including fixed and random effects as well as R2 values were created using the sjPlot 

package (see Lüdecke (2021) for details). The model statistics, p-values, standard errors and 

confidence intervals (CI; 95%) were computed using Satterthwaite’s approximation for degrees of 

freedom. ‘Plot no’ is the plot identifier and ‘tag’ the tree identifier. All analyses were conducted 

in R version 4.1.2 (R Core Team, 2021). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Table S7 Comparison of competition indices (Table S3) for the δ13C linear mixed-effects model 

(Table S6) against a null model without a competition index. 

Models npar AIC BIC logLik deviance Chisq Df Pr(>Chisq) 

null 5 1650.47 1675.04 -820.23 1640.47 NA NA NA 

nhigher 6 1652.22 1681.71 -820.11 1640.22 0.25 1 0.62 

relbah 6 1650.80 1680.30 -819.40 1638.80 1.41 0 NA 

relbab 6 1652.09 1681.59 -820.05 1640.09 0.00 0 NA 

hegyi 6 1651.34 1680.83 -819.67 1639.34 0.75 0 NA 

hegyih 6 1650.72 1680.22 -819.36 1638.72 0.61 0 NA 

hegyib 6 1652.38 1681.88 -820.19 1640.38 0.00 0 NA 

hcom 6 1652.44 1681.94 -820.22 1640.44 0.00 0 NA 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table S8 Best-fitting linear mixed-effects model of focal tree resistance-acquisition traits after 

model selection. 

  log(baistd) 

Predictors Estimates CI Statistic p df 

(Intercept) -0.15 -0.25 – -0.06 -3.13 0.002 178.59 

dbh  0.12 0.08 – 0.16 5.80 <0.001 276.94 

hegyi -0.12 -0.16 – -0.08 -6.06 <0.001 324.39 

NSR 0.04 0.01 – 0.07 2.40 0.018 116.73 

resistance-acquisition  -0.02 -0.11 – 0.08 -0.31 0.758 193.94 

year int -0.02 -0.04 – 0.00 -1.79 0.074 670.00 

NSR * resistance-acquisition  0.04 0.01 – 0.07 2.45 0.015 160.99 

resistance-acquisition * year int -0.08 -0.10 – -0.05 -6.84 <0.001 670.00 

Random Effects 

σ2 0.08 

τ00 tag:(plot_no:site) 0.07 

τ00 plot_no:site 0.01 

ICC 0.52 

N tag 336 

N plot_no 114 

N site 2 

Observations 1008 

Marginal R2 / Conditional R2 0.200 / 0.612 

Note: Significant fixed effects printed in bold. Linear mixed-effects models (LMMs) fit with the 

packages lme4 (Bates et al., 2015) and lmerTest (Kuznetsova et al., 2017) in R using restricted 

maximum likelihood estimation (REML) and an α of 0.05 for reporting significant effects. Model 

tables including fixed and random effects as well as R2 values were created using the sjPlot 

package (see Lüdecke (2021) for details). The model statistics, p-values, standard errors and 

confidence intervals (CI; 95%) were computed using Satterthwaite’s approximation for degrees of 

freedom. ‘Plot no’ is the plot identifier and ‘tag’ the tree identifier. All analyses were conducted 

in R version 4.1.2 (R Core Team, 2021). 

 

 



Table S9 Best-fitting linear mixed-effects model of neighbour resistance-acquisition traits after 

model selection. 

  log(baistd) 

Predictors Estimates CI Statistic p df 

(Intercept) -0.15 -0.25 – -0.05 -2.88 0.004 176.14 

dbh  0.12 0.08 – 0.16 5.58 <0.001 282.81 

hegyi -0.12 -0.16 – -0.08 -6.07 <0.001 324.78 

NSR 0.04 0.00 – 0.07 2.12 0.036 115.21 

year int -0.02 -0.04 – 0.00 -1.75 0.080 670.00 

resistance-acquisition 0.03 -0.03 – 0.10 1.08 0.282 490.68 

year int * resistance-acquisition -0.05 -0.07 – -0.02 -4.17 <0.001 670.00 

Random Effects 

σ2 0.09 

τ00 tag:(plot_no:site) 0.07 

τ00 plot_no:site 0.02 

ICC 0.51 

N tag 336 

N plot_no 114 

N site 2 

Observations 1008 

Marginal R2 / Conditional R2 0.173 / 0.595 

Note: Significant fixed effects printed in bold. Linear mixed-effects models (LMMs) fit with the 

packages lme4 (Bates et al., 2015) and lmerTest (Kuznetsova et al., 2017) in R using restricted 

maximum likelihood estimation (REML) and an α of 0.05 for reporting significant effects. Model 

tables including fixed and random effects as well as R2 values were created using the sjPlot 

package (see Lüdecke (2021) for details). The model statistics, p-values, standard errors and 

confidence intervals (CI; 95%) were computed using Satterthwaite’s approximation for degrees of 

freedom. ‘Plot no’ is the plot identifier and ‘tag’ the tree identifier. All analyses were conducted 

in R version 4.1.2 (R Core Team, 2021). 

 

 

 

 

 



Table S10 Linear mixed-effects model of focal tree resistance-acquisition traits that still includes 

the marginally significant 3-way interaction between year, neighbourhood species richness (NSR) 

and resistance-acquisition traits.  

  log(baistd) 

Predictors Estimates CI Statistic p df 

(Intercept) -0.16 -0.28 – -0.03 -2.43 0.015 425.58 

dbh  0.12 0.08 – 0.16 5.80 <0.001 276.94 

hegyi -0.12 -0.16 – -0.08 -6.06 <0.001 324.39 

NSR 0.04 -0.01 – 0.09 1.68 0.093 428.37 

year int -0.02 -0.06 – 0.03 -0.80 0.422 668.00 

resistance-acquisition  -0.09 -0.21 – 0.04 -1.35 0.177 451.55 

NSR * year int -0.00 -0.02 – 0.02 -0.05 0.963 668.00 

NSR * resistance-acquisition 0.07 0.02 – 0.12 2.95 0.003 566.08 

year int * resistance-acquisition -0.04 -0.09 – 0.01 -1.68 0.093 668.00 

(NSR * year int) * resistance-

acquisition 

-0.02 -0.03 – 0.00 -1.75 0.080 668.00 

Random Effects 

σ2 0.08 

τ00 tag:(plot_no:site) 0.07 

τ00 plot_no:site 0.01 

ICC 0.52 

N tag 336 

N plot_no 114 

N site 2 

Observations 1008 

Marginal R2 / Conditional R2 0.201 / 0.613 

Note: Significant fixed effects printed in bold. Linear mixed-effects models (LMMs) fit with the 

packages lme4 (Bates et al., 2015) and lmerTest (Kuznetsova et al., 2017) in R using restricted 

maximum likelihood estimation (REML) and an α of 0.05 for reporting significant effects. Model 

tables including fixed and random effects as well as R2 values were created using the sjPlot 

package (see Lüdecke (2021) for details). The model statistics, p-values, standard errors and 

confidence intervals (CI; 95%) were computed using Satterthwaite’s approximation for degrees of 



freedom. ‘Plot no’ is the plot identifier and ‘tag’ the tree identifier. All analyses were conducted 

in R version 4.1.2 (R Core Team, 2021). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table S11 Best-fitting linear mixed-effects model of focal tree stomatal control traits after model 

selection. 

  log(baistd) 

Predictors Estimates CI Statistic p df 

(Intercept) -0.16 -0.26 – -0.05 -3.00 0.003 177.35 

dbh  0.10 0.06 – 0.14 5.02 <0.001 274.02 

hegyi -0.12 -0.15 – -0.08 -5.89 <0.001 327.59 

NSR 0.04 0.01 – 0.08 2.29 0.024 118.62 

year int -0.02 -0.04 – 0.00 -1.77 0.078 670.00 

stomatal control 0.10 0.04 – 0.17 3.37 0.001 503.88 

year int * stomatal control -0.06 -0.08 – -0.04 -5.10 <0.001 670.00 

Random Effects 

σ2 0.08 

τ00 tag:(plot_no:site) 0.07 

τ00 plot_no:site 0.02 

ICC 0.52 

N tag 336 

N plot_no 114 

N site 2 

Observations 1008 

Marginal R2 / Conditional R2 0.166 / 0.603 

Note: Significant fixed effects printed in bold. Linear mixed-effects models (LMMs) fit with the 

packages lme4 (Bates et al., 2015) and lmerTest (Kuznetsova et al., 2017) in R using restricted 

maximum likelihood estimation (REML) and an α of 0.05 for reporting significant effects. Model 

tables including fixed and random effects as well as R2 values were created using the sjPlot 

package (see Lüdecke (2021) for details). The model statistics, p-values, standard errors and 

confidence intervals (CI; 95%) were computed using Satterthwaite’s approximation for degrees of 

freedom. ‘Plot no’ is the plot identifier and ‘tag’ the tree identifier. All analyses were conducted 

in R version 4.1.2 (R Core Team, 2021). 

 

 

 

 



Table S12 Best-fitting linear mixed-effects model of neighbour stomatal control traits after model 

selection. 

  log(baistd) 

Predictors Estimates CI Statistic p df 

(Intercept) -0.15 -0.26 – -0.05 -2.95 0.004 179.65 

dbh  0.10 0.06 – 0.14 4.95 <0.001 275.70 

hegyi -0.12 -0.16 – -0.08 -5.92 <0.001 328.73 

NSR 0.04 0.00 – 0.07 2.23 0.027 119.44 

year int -0.02 -0.04 – 0.00 -1.74 0.082 670.00 

stomatal control 0.08 0.02 – 0.14 2.57 0.011 502.83 

year int * stomatal control -0.03 -0.06 – -0.01 -3.04 0.002 670.00 

Random Effects 

σ2 0.09 

τ00 tag:(plot_no:site) 0.07 

τ00 plot_no:site 0.02 

ICC 0.52 

N tag 336 

N plot_no 114 

N site 2 

Observations 1008 

Marginal R2 / Conditional R2 0.160 / 0.593 

Note: Significant fixed effects printed in bold. Linear mixed-effects models (LMMs) fit with the 

packages lme4 (Bates et al., 2015) and lmerTest (Kuznetsova et al., 2017) in R using restricted 

maximum likelihood estimation (REML) and an α of 0.05 for reporting significant effects. Model 

tables including fixed and random effects as well as R2 values were created using the sjPlot 

package (see Lüdecke (2021) for details). The model statistics, p-values, standard errors and 

confidence intervals (CI; 95%) were computed using Satterthwaite’s approximation for degrees of 

freedom. ‘Plot no’ is the plot identifier and ‘tag’ the tree identifier. All analyses were conducted 

in R version 4.1.2 (R Core Team, 2021). 

 

 

 

 



Table S13 Best-fitting linear mixed-effects model of focal tree resistance-acquisition traits after 

model selection. 

  Δδ13C 

Predictors Estimates CI Statistic p df 

(Intercept) 0.16 0.08 – 0.24 3.91 <0.001 140.98 

year cat [2017] -0.19 -0.25 – -0.13 -6.21 <0.001 668.00 

year cat [2018] -0.28 -0.33 – -0.22 -9.14 <0.001 668.00 

resistance-acquisition -0.06 -0.14 – 0.02 -1.51 0.133 192.66 

year cat [2017] * resistance-acquisition 0.11 0.05 – 0.16 3.51 <0.001 668.00 

year cat [2018] * resistance-acquisition 0.06 -0.00 – 0.11 1.84 0.066 668.00 

Random Effects 

σ2 0.15 

τ00 tag:(plot_no:site) 0.29 

τ00 plot_no:site 0.04 

ICC 0.68 

N tag 336 

N plot_no 114 

N site 2 

Observations 1008 

Marginal R2 / Conditional R2 0.031 / 0.690 

Note: Significant fixed effects printed in bold. Linear mixed-effects models (LMMs) fit with the 

packages lme4 (Bates et al., 2015) and lmerTest (Kuznetsova et al., 2017) in R using restricted 

maximum likelihood estimation (REML) and an α of 0.05 for reporting significant effects. Model 

tables including fixed and random effects as well as R2 values were created using the sjPlot 

package (see Lüdecke (2021) for details). The model statistics, p-values, standard errors and 

confidence intervals (CI; 95%) were computed using Satterthwaite’s approximation for degrees of 

freedom. ‘Plot no’ is the plot identifier and ‘tag’ the tree identifier. All analyses were conducted 

in R version 4.1.2 (R Core Team, 2021). 

 

 

 

 



Table S14 Best-fitting linear mixed-effects model of neighbour resistance-acquisition traits after 

model selection. 

  Δδ13C 

Predictors Estimates CI Statistic p df 

(Intercept) 0.16 0.08 – 0.24 3.92 <0.001 139.09 

year cat [2017] -0.19 -0.25 – -0.13 -6.24 <0.001 668.00 

year cat [2018] -0.28 -0.33 – -0.22 -9.19 <0.001 668.00 

resistance-acquisition -0.05 -0.13 – 0.03 -1.22 0.224 151.57 

year cat [2017] * resistance-

acquisition 

0.13 0.07 – 0.19 4.35 <0.001 668.00 

year cat [2018] * resistance-

acquisition 

0.07 0.01 – 0.13 2.27 0.023 668.00 

Random Effects 

σ2 0.15 

τ00 tag:(plot_no:site) 0.29 

τ00 plot_no:site 0.03 

ICC 0.68 

N tag 336 

N plot_no 114 

N site 2 

Observations 1008 

Marginal R2 / Conditional R2 0.033 / 0.692 

Note: Significant fixed effects printed in bold. Linear mixed-effects models (LMMs) fit with the 

packages lme4 (Bates et al., 2015) and lmerTest (Kuznetsova et al., 2017) in R using restricted 

maximum likelihood estimation (REML) and an α of 0.05 for reporting significant effects. Model 

tables including fixed and random effects as well as R2 values were created using the sjPlot 

package (see Lüdecke (2021) for details). The model statistics, p-values, standard errors and 

confidence intervals (CI; 95%) were computed using Satterthwaite’s approximation for degrees of 

freedom. ‘Plot no’ is the plot identifier and ‘tag’ the tree identifier. All analyses were conducted 

in R version 4.1.2 (R Core Team, 2021). 

 

 



Table S15 Best-fitting linear mixed-effects model of focal tree stomatal control traits after model 

selection. 

  Δδ13C 

Predictors Estimates CI Statistic p df 

(Intercept) 0.36 0.16 – 0.56 3.61 <0.001 235.28 

NSR -0.04 -0.11 – 0.04 -0.93 0.351 239.44 

year int -0.15 -0.21 – -0.09 -4.76 <0.001 668.00 

stomatal control -0.29 -0.48 – -0.09 -2.84 0.005 228.98 

NSR * year int 0.01 -0.02 – 0.03 0.51 0.610 668.00 

NSR * stomatal control 0.09 0.01 – 0.16 2.26 0.024 315.29 

year int * stomatal control 0.12 0.06 – 0.18 3.73 <0.001 668.00 

(NSR * year int) * stomatal 

control 

-0.03 -0.06 – -0.01 -2.66 0.008 668.00 

Random Effects 

σ2 0.15 

τ00 tag:(plot_no:site) 0.29 

τ00 plot_no:site 0.03 

ICC 0.68 

N tag 336 

N plot_no 114 

N site 2 

Observations 1008 

Marginal R2 / Conditional R2 0.034 / 0.691 

Note: Significant fixed effects printed in bold. Linear mixed-effects models (LMMs) fit with the 

packages lme4 (Bates et al., 2015) and lmerTest (Kuznetsova et al., 2017) in R using restricted 

maximum likelihood estimation (REML) and an α of 0.05 for reporting significant effects. Model 

tables including fixed and random effects as well as R2 values were created using the sjPlot 

package (see Lüdecke (2021) for details). The model statistics, p-values, standard errors and 

confidence intervals (CI; 95%) were computed using Satterthwaite’s approximation for degrees of 

freedom. ‘Plot no’ is the plot identifier and ‘tag’ the tree identifier. All analyses were conducted 

in R version 4.1.2 (R Core Team, 2021). 

 

 

 



 

Table S16 Best-fitting linear mixed-effects model of neighbour stomatal control traits after model 

selection. 

  Δδ13C 

Predictors Estimates CI Statistic p df 

(Intercept) 0.28 0.19 – 0.37 5.90 <0.001 250.05 

year int -0.14 -0.17 – -0.11 -9.13 <0.001 670.00 

stomatal control -0.10 -0.20 – -0.01 -2.21 0.028 291.89 

year int * stomatal control 0.05 0.02 – 0.08 3.43 0.001 670.00 

Random Effects 

σ2 0.15 

τ00 tag:(plot_no:site) 0.29 

τ00 plot_no:site 0.04 

ICC 0.68 

N tag 336 

N plot_no 114 

N site 2 

Observations 1008 

Marginal R2 / Conditional R2 0.029 / 0.689 

Note: Significant fixed effects printed in bold. Linear mixed-effects models (LMMs) fit with the 

packages lme4 (Bates et al., 2015) and lmerTest (Kuznetsova et al., 2017) in R using restricted 

maximum likelihood estimation (REML) and an α of 0.05 for reporting significant effects. Model 

tables including fixed and random effects as well as R2 values were created using the sjPlot 

package (see Lüdecke (2021) for details). The model statistics, p-values, standard errors and 

confidence intervals (CI; 95%) were computed using Satterthwaite’s approximation for degrees of 

freedom. ‘Plot no’ is the plot identifier and ‘tag’ the tree identifier. All analyses were conducted 

in R version 4.1.2 (R Core Team, 2021). 

 

 

 

 

 

 

 

 

 



Supplementary analysis 1 
 

To test for potential differences between site A and B of the BEF-China experiment (Bruelheide 

et al., 2014), we conducted a separate analysis of Schima superba, the species sampled at both 

sites (Fig. 1, Table S1). We used the same linear mixed-effects model (LMMs) structure as in the 

main analyses but included site as fixed and not as random effect. LMMs thus modelled growth 

and δ13C in response to focal tree size, competition by neighbours, climate, neighbourhood species 

richness (NSR) and site. We also included the 3-way interaction between climate × NSR × site as 

well as all potential 2-way interactions as fixed effects. We did not include species traits as we 

only examined one species. These analyses confirmed that growth and δ13C responses did not 

differ between sites (see Tables S17,18 for the full models). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table S17 Full linear mixed-effects model for growth of the species Schima superba exploring 

the influence of experimental site (A or B). 

  log(baistd) 

Predictors Estimates CI Statistic p df 

(Intercept) 0.20 -0.15 – 0.54 1.16 0.256 30.49 

dbh  0.22 0.13 – 0.32 4.83 <0.001 31.38 

hegyi -0.10 -0.19 – -0.01 -2.23 0.033 33.82 

NSR -0.09 -0.22 – 0.04 -1.46 0.153 34.34 

year int -0.15 -0.24 – -0.05 -3.15 0.002 80.00 

site [B] -0.18 -0.72 – 0.35 -0.74 0.472 13.16 

NSR * year int 0.05 0.01 – 0.08 2.80 0.006 80.00 

NSR * site [B] 0.05 -0.13 – 0.23 0.60 0.558 16.30 

year int * site [B] 0.09 -0.04 – 0.22 1.37 0.174 80.00 

(NSR * year int) * site 

[B] 

-0.02 -0.07 – 0.03 -0.74 0.459 80.00 

Random Effects 

σ2 0.02 

τ00 tag:plot_no 0.05 

τ00 plot_no 0.01 

ICC 0.72 

N tag 42 

N plot_no 16 

Observations 126 

Marginal R2 / Conditional R2 0.468 / 0.854 

Note: Significant fixed effects printed in bold. Linear mixed-effects models (LMMs) fit with the 

packages lme4 (Bates et al., 2015) and lmerTest (Kuznetsova et al., 2017) in R using restricted 

maximum likelihood estimation (REML) and an α of 0.05 for reporting significant effects. Model 

tables including fixed and random effects as well as R2 values were created using the sjPlot 

package (see Lüdecke (2021) for details). The model statistics, p-values, standard errors and 

confidence intervals (CI; 95%) were computed using Satterthwaite’s approximation for degrees of 

freedom. All analyses were conducted in R version 4.1.2 (R Core Team, 2021). 

 

 



Table S18 Full linear mixed-effects model for growth of the species Schima superba exploring 

the influence of experimental site (A or B). 

  Δδ13C 

Predictors Estimates CI Statistic p df 

(Intercept) 0.20 -0.77 – 1.17 0.42 0.676 28.76 

dbh  0.13 -0.09 – 0.35 1.18 0.247 27.81 

hegyi 0.11 -0.11 – 0.33 1.04 0.305 30.79 

NSR 0.03 -0.33 – 0.39 0.16 0.871 32.03 

year int -0.19 -0.45 – 0.07 -1.45 0.150 80.00 

site [B] 0.66 -0.90 – 2.22 0.90 0.384 16.14 

NSR * year int 0.02 -0.08 – 0.12 0.42 0.679 80.00 

NSR * site [B] -0.28 -0.82 – 0.25 -1.11 0.283 18.62 

year int * site [B] -0.05 -0.42 – 0.32 -0.26 0.795 80.00 

(NSR * year int) * site 

[B] 

0.04 -0.10 – 0.18 0.64 0.525 80.00 

Random Effects 

σ2 0.16 

τ00 tag:plot_no 0.21 

τ00 plot_no 0.15 

ICC 0.69 

N tag 42 

N plot_no 16 

Observations 126 

Marginal R2 / Conditional R2 0.078 / 0.713 

Note: Significant fixed effects printed in bold. Linear mixed-effects models (LMMs) fit with the 

packages lme4 (Bates et al., 2015) and lmerTest (Kuznetsova et al., 2017) in R using restricted 

maximum likelihood estimation (REML) and an α of 0.05 for reporting significant effects. Model 

tables including fixed and random effects as well as R2 values were created using the sjPlot 

package (see Lüdecke (2021) for details). The model statistics, p-values, standard errors and 

confidence intervals (CI; 95%) were computed using Satterthwaite’s approximation for degrees of 

freedom. All analyses were conducted in R version 4.1.2 (R Core Team, 2021). 

 

 



Supplementary discussion 1 – coordination of drought-tolerance traits 
 

We observed species responses in wet-to-dry years along the resistance-acquisition gradient 

consistent with the current understanding of a trade-off between high cavitation resistance (low 

50) and acquisitive resource use in tropical tree species (Guillemot et al., 2022). Similarly, Reich 

(2014) concluded that acquisitive species thrive under optimal conditions due to their high capacity 

to transport and store water, while resistant species have slower resource economics but are less 

vulnerable to drought. Due to the orthogonality of the examined trait gradients, we interpret 

stomatal control as the extent to which early or late stomatal closure protects the tree’s xylem from 

cavitation during drought at constant levels of cavitation resistance. We thus view stomatal control 

as a gradient capturing the trade-off between water spending (i.e. continued transpiration under 

drought) and water saving stomatal control (i.e. stomatal closure as protection against cavitation). 

This view aligns with contemporary perspectives (Martínez-Vilalta & Garcia-Forner, 2017) and 

fits the species responses we observed in wet-to-dry years.  

 

However, some association between resistance-acquisition and stomatal control traits may be 

expected in general, as stomata regulate leaf water potentials to avoid xylem cavitation (McDowell 

et al., 2008). For instance, there is evidence that 50 and the LES are associated with turgor loss 

point (arguably a proxy for stomatal control) and with (an-)isohydry across species (Fu & Meinzer, 

2019; Klein, 2014; Zhu et al., 2018). In contrast, recent local studies did not find any relationship 

between turgor loss point and 50 (Laughlin et al., 2020), nor between turgor loss point and LES 

traits (Maréchaux, Saint‐André, Bartlett, Sack, & Chave, 2020). Therefore, the relationships 

between drought-tolerance traits likely depend on the geographical extent of the study and the 

range of traits considered. Particularly the multitude of approaches to quantify stomatal control 

and recent criticisms of classical approaches (Martínez-Vilalta & Garcia-Forner, 2017) may limit 

our ability to draw general conclusions on the nature and interrelation of both gradients. For 

instance, stomatal control defined as leaf water potential regulation (i.e. the classical (an-)isohydry 

definition) has been shown to be not strongly related to leaf gas exchange dynamics or the 

hydraulic or carbon limitations under drought (Martínez-Vilalta & Garcia-Forner, 2017). In this 

context, we consider direct measurements of stomatal conductance regulation (or similar ones like 

sap flux regulation; Schnabel et al., 2022) under gradients of soil and atmospheric drought as 

crucial to better characterize water-use and drought-tolerance strategies. Universal trait syndromes 

governing forest responses to drought thus remain controversial (e.g. Guillemot et al., 2022; Henry 

et al., 2019; Oliveira et al., 2021) and remain a research frontier for future studies. 
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