61 research outputs found
Biological and trophic consequences of genetic introgression between endemic and invasive Barbus fishes.
Genetic introgression with native species is recognized as a detrimental impact resulting from biological invasions involving taxonomically similar invaders. Whilst the underlying genetic mechanisms are increasingly understood, the ecological consequences of introgression are relatively less studied, despite their utility for increasing knowledge on how invasion impacts can manifest. Here, the ecological consequences of genetic introgression from an invasive congener were tested using the endemic barbel populations of central Italy, where the invader was the European barbel Barbus barbus. Four populations of native Barbus species (B. plebejus and B. tyberinus) were studied: two purebred and two completely introgressed with alien B. barbus. Across the four populations, differences in their biological traits (growth, body condition and population demographic structure) and trophic ecology (gut content analysis and stable isotope analysis) were tested. While all populations had similar body condition and were dominated by fish up to 2 years of age, the introgressed fish had substantially greater lengths at the same age, with maximum lengths 410-460 mm in hybrids versus 340-360 mm in native purebred barbel. The population characterized by the highest number of introgressed B. barbus alleles (81 %) had the largest trophic niche and a substantially lower trophic position than the other populations through its exploitation of a wider range of resources (e.g. small fishes and plants). These results attest that the genetic introgression of an invasive congener with native species can result in substantial ecological consequences, including the potential for cascading effects. Supplementary Information: The online version contains supplementary material available at 10.1007/s10530-021-02577-6
The surface nanostructures of titanium alloy regulate the proliferation of endothelial cells
To investigate the effect of surface nanostructures on the behaviors of human umbilical vein endothelial cells (HUVECs), surface nanostructured titanium alloy (Ti-3Zr2Sn-3Mo-25Nb, TLM) was fabricated by surface mechanical attrition treatment (SMAT) technique. Field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), transmission electron microscopy (TEM) and X-ray diffraction (XRD) were employed to characterize the surface nanostructures of the TLM, respectively. The results demonstrated that nano-crystalline structures with several tens of nanometers were formed on the surface of TLM substrates. The HUVECs grown onto the surface nanostructured TLM spread well and expressed more vinculin around the edges of cells. More importantly, HUVECs grown onto the surface nanostructured TLM displayed significantly higher (p < 0.01 or p < 0.05) cell adhesion and viabilities than those of native titanium alloy. HUVECs cultured on the surface nanostructured titanium alloy displayed significantly higher (p < 0.01 or p < 0.05) productions of nitric oxide (NO) and prostacyclin (PGI2) than those of native titanium alloy, respectively. This study provides an alternative for the development of titanium alloy based vascular stents
Continuous-flow sorting of microalgae cells based on lipid content by high frequency dielectrophoresis
This paper presents a continuous-flow cell screening device to isolate and separate microalgae cells (Chlamydomonas reinhardtii) based on lipid content using high frequency (50 MHz) dielectrophoresis. This device enables screening of microalgae due to the balance between lateral DEP forces relative to hydrodynamic forces. Positive DEP force along with amplitude-modulated electric field exerted on the cells flowing over the planar interdigitated electrodes, manipulated low-lipid cell trajectories in a zigzag pattern. Theoretical modelling confirmed cell trajectories during sorting. Separation quantification and sensitivity analysis were conducted with time-course experiments and collected samples were analysed by flow cytometry. Experimental testing with nitrogen starveddw15-1 (high-lipid, HL) and pgd1 mutant (low-lipid, LL) strains were carried out at different time periods, and clear separation of the two populations was achieved. Experimental results demonstrated that three populations were produced during nitrogen starvation: HL, LL and low-chlorophyll (LC) populations. Presence of the LC population can affect the binary separation performance. The continuous-flow micro-separator can separate 74% of the HL and 75% of the LL out of the starting sample using a 50 MHz, 30 voltages peak-to-peak AC electric field at Day 6 of the nitrogen starvation. The separation occurred between LL (low-lipid: 86.1% at Outlet # 1) and LC (88.8% at Outlet # 2) at Day 9 of the nitrogen starvation. This device can be used for onsite monitoring; therefore, it has the potential to reduce biofuel production cost
- …