6,641 research outputs found
A New Field of Dreams: A Study of the Writing Major
Within Writing Studies, the tension between pedagogy and theory, between teaching and disciplinary status receives much commentary. This dissertation explores that tension within the context of the undergraduate Writing major. I begin by reviewing scholarship about advanced composition, advanced Writing, and the Writing major. I read this literature in light of concerns about student subjectivity, authorship, and disciplinary participation. Through that reading, I explore the conflicted status of the student subject imagined within this literature. The subject I discern contains elements of what Susan Miller describes as the normative subject of composition as well as elements of a revised and politically astute Writing Studies. In chapter two, I demonstrate how these elements also appeared in the discourse of students who participated in the two-institution study of undergraduate Writing majors upon which the remaining chapters of this dissertation are based. In chapter three, I argue that when students articulated the work of the Writing major, they privileged relational, affective labor in ways that may potentially affirm arguments for the Writing major as a vehicle for disciplinarity as well as assert pedagogy\u27s continued importance within Writing Studies even as its practitioners pursue academic professionalization. Chapter four examines students\u27 discourse and their writing for scholarly, professional, and civic purposes in order to demonstrate how students contribute to-- and participate in--goals widely held within Writing Studies through academic, creative, and creative nonfiction forms. In the fifth and concluding chapter, I consider the implications of this research for scholarly writing practice and for writing pedagogy. I also acknowledge the limitations of this current project and outline an agenda for future research. Ultimately, this dissertation encourages a broad understanding of students\u27 disciplinary contribution and participation
âWeaving all of them togetherâ: How Writing Majors Talk about Creative Writing
The labels âcreativeâ and âcreative writingâ serve several purposes in the discourses of undergraduate writing majors. In a study of students in two writing major programs, students often exerted significant effort to negotiate among diverse writing experiences and to integrate different understandings of writing. Their efforts mirror scholarsâ conversations about negotiation and integration at the level of curricula and programs. Writing majors in this study raised issues relevant to the well-established curricular domains of theoretical knowledge, professional expertise, and civic action. They explained their insights using a mix of idiosyncratic, institutional, and disciplinary language that frequently relied on forms of âânotâ talkâ (Reiff and Bawarshi). One term around which much of their blended-language and ânotâ talk centered was âcreative.â Students used the label âcreativeâ to mean writing fiction and poetry, personal expression, creative nonfiction prose, nonacademic discourse, and flexibility in style and genre. Frequently, these uses were mixed together or slipped casually from one to another. These findings suggest that as students engage with disciplinary purposes for writing in the major, they draw from a range of literacy discourses to negotiate among and to integrate diverse forms of knowledge
Deep Convolutional Neural Networks as strong gravitational lens detectors
Future large-scale surveys with high resolution imaging will provide us with
a few new strong galaxy-scale lenses. These strong lensing systems
however will be contained in large data amounts which are beyond the capacity
of human experts to visually classify in a unbiased way. We present a new
strong gravitational lens finder based on convolutional neural networks (CNNs).
The method was applied to the Strong Lensing challenge organised by the Bologna
Lens Factory. It achieved first and third place respectively on the space-based
data-set and the ground-based data-set. The goal was to find a fully automated
lens finder for ground-based and space-based surveys which minimizes human
inspect. We compare the results of our CNN architecture and three new
variations ("invariant" "views" and "residual") on the simulated data of the
challenge. Each method has been trained separately 5 times on 17 000 simulated
images, cross-validated using 3 000 images and then applied to a 100 000 image
test set. We used two different metrics for evaluation, the area under the
receiver operating characteristic curve (AUC) score and the recall with no
false positive (). For ground based data our
best method achieved an AUC score of and a
of . For space-based data our best
method achieved an AUC score of and a
of . On space-based data adding dihedral invariance to the CNN
architecture diminished the overall score but achieved a higher no
contamination recall. We found that using committees of 5 CNNs produce the best
recall at zero contamination and consistenly score better AUC than a single
CNN. We found that for every variation of our CNN lensfinder, we achieve AUC
scores close to within .Comment: 9 pages, accepted to A&
Parton cascade description of relativistic heavy-ion collisions at CERN SPS energies ?
We examine Pb+Pb collisions at CERN SPS energy 158 A GeV, by employing the
earlier developed and recently refined parton-cascade/cluster-hadronization
model and its Monte Carlo implementation. This space-time model involves the
dynamical interplay of perturbative QCD parton production and evolution, with
non-perturbative parton-cluster formation and hadron production through cluster
decays. Using computer simulations, we are able to follow the entwined
time-evolution of parton and hadron degrees of freedom in both position and
momentum space, from the instant of nuclear overlap to the final yield of
particles. We present and discuss results for the multiplicity distributions,
which agree well with the measured data from the CERN SPS, including those for
K mesons. The transverse momentum distributions of the produced hadrons are
also found to be in good agreement with the preliminary data measured by the
NA49 and the WA98 collaboration for the collision of lead nuclei at the CERN
SPS. The analysis of the time evolution of transverse energy deposited in the
collision zone and the energy density suggests an existence of partonic matter
for a time of more than 5 fm.Comment: 16 pages including 7 postscript figure
Heavy resonance production in high energy nuclear collisions
We estimate freezeout conditions for , , and quarks in high energy
nuclear collisions. Freezeout is due either to loss of thermal contact, or to
particles ``wandering'' out of the region of hot matter. We then develop a
thermal recombination model in which both single-particle (quark and antiquark)
and two-particle (quark-antiquark) densities are conserved. Conservation of
two-particle densities is necessary because quarks and antiquarks are always
produced in coincidence, so that the local two-particle density can be much
larger than the product of the single-particle densities. We use the freezeout
conditions and recombination model to discuss heavy resonance production at
zero baryon density in high energy nuclear collisions.Comment: revtex, 15 pages, no figures, KSUCNR-009-9
Thermal quark production in ultra-relativistic nuclear collisions
We calculate thermal production of u, d, s, c and b quarks in
ultra-relativistic heavy ion collisions. The following processes are taken into
account: thermal gluon decay (g to ibar i), gluon fusion (g g to ibar i), and
quark-antiquark annihilation (jbar j to ibar i), where i and j represent quark
species. We use the thermal quark masses, ,
in all the rates. At small mass (), the production is largely
dominated by the thermal gluon decay channel. We obtain numerical and analytic
solutions of one-dimensional hydrodynamic expansion of an initially pure glue
plasma. Our results show that even in a quite optimistic scenario, all quarks
are far from chemical equilibrium throughout the expansion. Thermal production
of light quarks (u, d and s) is nearly independent of species. Heavy quark (c
and b) production is quite independent of the transition temperature and could
serve as a very good probe of the initial temperature. Thermal quark production
measurements could also be used to determine the gluon damping rate, or
equivalently the magnetic mass.Comment: 14 pages (latex) plus 6 figures (uuencoded postscript files);
CERN-TH.7038/9
Naive mean field approximation for image restoration
We attempt image restoration in the framework of the Baysian inference.
Recently, it has been shown that under a certain criterion the MAP (Maximum A
Posterior) estimate, which corresponds to the minimization of energy, can be
outperformed by the MPM (Maximizer of the Posterior Marginals) estimate, which
is equivalent to a finite-temperature decoding method. Since a lot of
computational time is needed for the MPM estimate to calculate the thermal
averages, the mean field method, which is a deterministic algorithm, is often
utilized to avoid this difficulty. We present a statistical-mechanical analysis
of naive mean field approximation in the framework of image restoration. We
compare our theoretical results with those of computer simulation, and
investigate the potential of naive mean field approximation.Comment: 9 pages, 11 figure
Effect of baryon density on parton production, chemical equilibration and thermal photon emission from quark gluon plasma
The effect of baryon density on parton production processes of
and is studied
using full phase space distribution function and also with inclusion of quantum
statistics i.e. Pauli blocking and Bose enhancement factors, in the case of
both saturated and unsaturated quark gluon plasma. The rate for the process is found to be much less as compared to the most
commonly used factorized result obtained on the basis of classical
approximation. This discrepancy, which is found both at zero as well as at
finite baryon densities, however, is not due to the lack of quantum statistics
in the classical approximation, rather due to the use of Fermi-Dirac and
Bose-Einstein distribution functions for partons instead of Boltzmann
distribution which is appropriate under such approximation. Interestingly, the
rates of parton production are found to be insensitive to the baryo-chemical
potential particularly when the plasma is unsaturated although the process of
chemical equilibration strongly depends on it. The thermal photon yields, have
been calculated specifically from unsaturated plasma at finite baryon density.
The exact results obtained numerically are found to be in close agreement with
the analytic expression derived using factorized distribution functions
appropriate for unsaturated plasma. Further, it is shown that in the case of
unsaturated plasma, the thermal photon production is enhanced with increasing
baryon density both at fixed temperature and fixed energy density of the quark
gluon plasma.Comment: Latex, 24 pages, 6 postscript figures. Submitted to Phys. Rev.
- âŠ