5,518 research outputs found

    Flash of photons from the early stage of heavy-ion collisions

    Get PDF
    The dynamics of partonic cascades may be an important aspect for particle production in relativistic collisions of nuclei at CERN SPS and BNL RHIC energies. Within the Parton-Cascade Model, we estimate the production of single photons from such cascades due to scattering of quarks and gluons q g -> q gamma, quark-antiquark annihilation q qbar -> g gamma, or gamma gamma, and from electromagnetic brems-strahlung of quarks q -> q gamma. We find that the latter QED branching process plays the dominant role for photon production, similarly as the QCD branchings q -> q g and g -> g g play a crucial role for parton multiplication. We conclude therefore that photons accompanying the parton cascade evolution during the early stage of heavy-ion collisions shed light on the formation of a partonic plasma.Comment: 4 pages including 3 postscript figure

    A QCD space-time analysis of quarkonium formation and evolution in hadronic collisions

    Get PDF
    The production of heavy quarkonium as QQbar bound-states in hadron-hadron collisions is considered within the framework of a space-time description, combining parton-cascade evolution with a coalescence model for bound-state formation. The `hard' production of the initial QQbar, directly or via gluon fragmentation and including both color-singlet and color-octet contributions, is calculated from the PQCD cross-sections. The subsequent development of the QQbar system is described within a space-time generalization of the DGLAP parton-evolution formalism in position- and momentum-space. The actual formation of the bound-states is accomplished through overlap of the QQbar pair and a spectrum of quarkonium wave-functions. This coalescence can only occur after sufficent gluon radiation reduces the QQbar relative velocity to a value commensurate with the non-relativistic kinematics of these bound systems. The presence of gluon participants in the cascade then is both necessary and leads to the natural inclusion of both color-singlet and color-octet mechanisms. The application of this approach to pp (ppbar) collisions from sqrt(s)= 30 GeV - 14 TeV reveals very decent agreement with available data from ISR and Tevatron - without the necessity of introducing fit parameters. Moreover, production probabilities are calculated for a complete spectrum of charmonium and bottonium states, with the relative significance compared to open charm (bottom) production. An analysis of the space-time development is carried through which sheds light on the relevance of gluon radiation and color-structure, suggesting a correponding experimental investigation.Comment: 37 pages including 16 postscript figure

    Excitation Function of Energy Density and Partonic Degrees of Freedom in Relativistic Heavy Ion Collisions

    Get PDF
    We estimate the energy density pile-up at mid-rapidity in central Pb+Pb collisions from 2 - 200 GeV/nucleon. The energy density is decomposed into hadronic and partonic contributions. A detailed analysis of the collision dynamics in the framework of a microscopic transport model shows the importance of partonic degrees of freedom and rescattering of leading (di)quarks in the early phase of the reaction for lab-energies > 30 GeV/nucleon. In Pb+Pb collisions at 160 GeV/nucleon the energy density reaches up to 4 GeV/fm^3, 95% of which are contained in partonic degrees of freedom.Comment: 10 pages, 4 figure

    Validation of gyrokinetic modelling of light impurity transport including rotation in ASDEX Upgrade

    Get PDF
    Upgraded spectroscopic hardware and an improved impurity concentration calculation allow accurate determination of boron density in the ASDEX Upgrade tokamak. A database of boron measurements is compared to quasilinear and nonlinear gyrokinetic simulations including Coriolis and centrifugal rotational effects over a range of H-mode plasma regimes. The peaking of the measured boron profiles shows a strong anti-correlation with the plasma rotation gradient, via a relationship explained and reproduced by the theory. It is demonstrated that the rotodiffusive impurity flux driven by the rotation gradient is required for the modelling to reproduce the hollow boron profiles at higher rotation gradients. The nonlinear simulations validate the quasilinear approach, and, with the addition of perpendicular flow shear, demonstrate that each symmetry breaking mechanism that causes momentum transport also couples to rotodiffusion. At lower rotation gradients, the parallel compressive convection is required to match the most peaked boron profiles. The sensitivities of both datasets to possible errors is investigated, and quantitative agreement is found within the estimated uncertainties. The approach used can be considered a template for mitigating uncertainty in quantitative comparisons between simulation and experiment.Comment: 19 pages, 11 figures, accepted in Nuclear Fusio

    Reaction dynamics in Pb+Pb at the CERN/SPS: from partonic degrees of freedom to freeze-out

    Get PDF
    We analyze the reaction dynamics of central Pb+Pb collisions at 160 GeV/nucleon. First we estimate the energy density pile-up at mid-rapidity and calculate its excitation function: The energy density is decomposed into hadronic and partonic contributions. A detailed analysis of the collision dynamics in the framework of a microscopic transport model shows the importance of partonic degrees of freedom and rescattering of leading (di)quarks in the early phase of the reaction for E > 30 GeV/nucleon. The energy density reaches up to 4 GeV/fm^3, 95% of which are contained in partonic degrees of freedom. It is shown that cells of hadronic matter, after the early reaction phase, can be viewed as nearly chemically equilibrated. This matter never exceeds energy densities of 0.4 GeV/fm^3, i.e. a density above which the notion of separated hadrons loses its meaning. The final reaction stage is analyzed in terms of hadron ratios, freeze-out distributions and a source analysis for final state pions.Comment: 10 pages, 7 figures, Proceedings of the Erice School on Nuclear Physics in Erice, Sicily, Italy, September 17 -25 1998; to be published in Progress in Particle and Nuclear Physics Vol. 4

    Soft Electromagnetic Radiations From Equilibrating Quark-Gluon Plasma

    Full text link
    We evaluate the bremsstrahlung production of low mass dileptons and soft photons from equilibrating and transversely expanding quark gluon plasma which may be created in the wake of relativistic heavy ion collisions. We use initial conditions obtained from the self screened parton cascade model. We consider a boost invariant longitudinal and cylindrically symmetric transverse expansion of the parton plasma and find that for low mass dileptons (M≤0.3M \leq 0.3 GeV) and soft photons (pT≤0.5p_{T} \leq 0.5 GeV), the bremsstrahlung contribution is rather large compared to annihilation process at both RHIC and LHC energies. We also find an increase by a factor of 15-20 in the low mass dileptons and soft photons yield as one goes from RHIC to LHC energies.Comment: 8 pages, including 7 figures To appear in Phys. Rev.
    • …
    corecore