7,165 research outputs found

    A case study of effective practice in mathematics teaching and learning informed by Valsiner’s zone theory

    Get PDF
    The characteristics that typify an effective teacher of mathematics and the environments that support effective teaching practices have been a long-term focus of educational research. In this article we report on an aspect of a larger study that investigated ‘best practice’ in mathematics teaching and learning across all Australian states and territories. A case study from one Australian state was developed from data collected via classroom observations and semi-structured interviews with school leaders and teachers and analysed using Valsiner’s zone theory. A finding of the study is that ‘successful’ practice is strongly tied to school context and the cultural practices that have been developed by school leaders and teachers to optimise student learning opportunities. We illustrate such an alignment of school culture and practice through a vignette based on a case of one ‘successful’ school

    Flash of photons from the early stage of heavy-ion collisions

    Get PDF
    The dynamics of partonic cascades may be an important aspect for particle production in relativistic collisions of nuclei at CERN SPS and BNL RHIC energies. Within the Parton-Cascade Model, we estimate the production of single photons from such cascades due to scattering of quarks and gluons q g -> q gamma, quark-antiquark annihilation q qbar -> g gamma, or gamma gamma, and from electromagnetic brems-strahlung of quarks q -> q gamma. We find that the latter QED branching process plays the dominant role for photon production, similarly as the QCD branchings q -> q g and g -> g g play a crucial role for parton multiplication. We conclude therefore that photons accompanying the parton cascade evolution during the early stage of heavy-ion collisions shed light on the formation of a partonic plasma.Comment: 4 pages including 3 postscript figure

    Space station integrated wall design and penetration damage control. Task 3: Theoretical analysis of penetration mechanics

    Get PDF
    The efforts to provide a penetration code called PEN4 version 10 is documented for calculation of projectile and target states for the impact of 2024-T3 aluminum, R sub B 90 1018 steel projectiles and icy meteoroids onto 2024-T3 aluminum plates at impact velocities from 0 to 16 km/s. PEN4 determines whether a plate is perforated by calculating the state of fragmentation of projectile and first plate. Depth of penetration into the second to n sup th plate by fragments resulting from first plate perforation is determined by multiple cratering. The results from applications are given

    Out of Equilibrium Non-perturbative Quantum Field Dynamics in Homogeneous External Fields

    Get PDF
    The quantum dynamics of the symmetry broken lambda (Phi^2)^2 scalar field theory in the presence of an homogeneous external field is investigated in the large N limit. We choose as initial state the ground state for a constant external field J .The sign of the external field is suddenly flipped from J to - J at a given time and the subsequent quantum dynamics calculated. Spinodal instabilities and parametric resonances produce large quantum fluctuations in the field components transverse to the external field. This allows the order parameter to turn around the maximum of the potential for intermediate times. Subsequently, the order parameter starts to oscillate near the global minimum for external field - J, entering a novel quasi-periodic regime.Comment: LaTex, 30 pages, 12 .ps figures, improved version to appear in Phys Rev

    Parton cascade description of relativistic heavy-ion collisions at CERN SPS energies ?

    Get PDF
    We examine Pb+Pb collisions at CERN SPS energy 158 A GeV, by employing the earlier developed and recently refined parton-cascade/cluster-hadronization model and its Monte Carlo implementation. This space-time model involves the dynamical interplay of perturbative QCD parton production and evolution, with non-perturbative parton-cluster formation and hadron production through cluster decays. Using computer simulations, we are able to follow the entwined time-evolution of parton and hadron degrees of freedom in both position and momentum space, from the instant of nuclear overlap to the final yield of particles. We present and discuss results for the multiplicity distributions, which agree well with the measured data from the CERN SPS, including those for K mesons. The transverse momentum distributions of the produced hadrons are also found to be in good agreement with the preliminary data measured by the NA49 and the WA98 collaboration for the collision of lead nuclei at the CERN SPS. The analysis of the time evolution of transverse energy deposited in the collision zone and the energy density suggests an existence of partonic matter for a time of more than 5 fm.Comment: 16 pages including 7 postscript figure

    Non-equilibrium dynamics in quantum field theory at high density: the tsunami

    Get PDF
    The dynamics of a dense relativistic quantum fluid out of thermodynamic equilibrium is studied in the framework of the Phi^4 scalar field theory in the large N limit. The time evolution of a particle distribution in momentum space (the tsunami) is computed. The effective mass felt by the particles in such a high density medium equals the tree level mass plus the expectation value of the squared field. The case of negative tree level squared mass is particularly interesting. In such case dynamical symmetry restoration as well as dynamical symmetry breaking can happen. Furthermore, the symmetry may stay broken with vanishing asymptotic squared mass showing the presence of out of equilibrium Goldstone bosons. We study these phenomena and identify the set of initial conditions that lead to each case. We compute the equation of state which turns to depend on the initial state. Although the system does not thermalize, the equation of state for asymptotically broken symmetry is of radiation type. We compute the correlation functions at equal times. The two point correlator for late times is the sum of different terms. One stems from the initial particle distribution. Another term accounts for the out of equilibrium Goldstone bosons created by spinodal unstabilities when the symmetry is asymptotically broken.Both terms are of the order of the inverse of the coupling for distances where causal signals can connect the two points. The contribution of the out of equilibrium Goldstones exhibits scaling behaviour in a generalized sense.Comment: LaTex, 49 pages, 15 .ps figure

    Inclusive Particle Spectra at RHIC

    Get PDF
    A simulation is performed of the recently reported data from PHOBOS at energies of 56 and 130 A GeV using the relativistic heavy ion cascade LUCIFER which had previously given a good description of the NA49 inclusive spectra at E=17.2 A GeV. The results compare well with these early measurements at RHIC.Comment: 4 pages, 2 figure

    Hydrogen-like Atoms from Ultrarelativistic Nuclear Collisions

    Get PDF
    The number of hydrogen-like atoms produced when heavy nuclei collide is estimated for central collisions at the Relativistic Heavy Ion Collider using the sudden approximation of Baym et al. As first suggested by Schwartz, a simultaneous measurement of the hydrogen and hadron spectra will allow an inference of the electron or muon spectra at low momentum where a direct experimental measurement is not feasible.Comment: 6 pages, 4 figure

    Multi-State Image Restoration by Transmission of Bit-Decomposed Data

    Get PDF
    We report on the restoration of gray-scale image when it is decomposed into a binary form before transmission. We assume that a gray-scale image expressed by a set of Q-Ising spins is first decomposed into an expression using Ising (binary) spins by means of the threshold division, namely, we produce (Q-1) binary Ising spins from a Q-Ising spin by the function F(\sigma_i - m) = 1 if the input data \sigma_i \in {0,.....,Q-1} is \sigma_i \geq m and 0 otherwise, where m \in {1,....,Q-1} is the threshold value. The effects of noise are different from the case where the raw Q-Ising values are sent. We investigate which is more effective to use the binary data for transmission or to send the raw Q-Ising values. By using the mean-field model, we first analyze the performance of our method quantitatively. Then we obtain the static and dynamical properties of restoration using the bit-decomposed data. In order to investigate what kind of original picture is efficiently restored by our method, the standard image in two dimensions is simulated by the mean-field annealing, and we compare the performance of our method with that using the Q-Ising form. We show that our method is more efficient than the one using the Q-Ising form when the original picture has large parts in which the nearest neighboring pixels take close values.Comment: latex 24 pages using REVTEX, 10 figures, 4 table

    Effect of baryon density on parton production, chemical equilibration and thermal photon emission from quark gluon plasma

    Full text link
    The effect of baryon density on parton production processes of gg⇌ggggg\rightleftharpoons ggg and gg⇌qqˉgg\rightleftharpoons q{\bar q} is studied using full phase space distribution function and also with inclusion of quantum statistics i.e. Pauli blocking and Bose enhancement factors, in the case of both saturated and unsaturated quark gluon plasma. The rate for the process gg⇌qqˉgg \rightleftharpoons q{\bar q} is found to be much less as compared to the most commonly used factorized result obtained on the basis of classical approximation. This discrepancy, which is found both at zero as well as at finite baryon densities, however, is not due to the lack of quantum statistics in the classical approximation, rather due to the use of Fermi-Dirac and Bose-Einstein distribution functions for partons instead of Boltzmann distribution which is appropriate under such approximation. Interestingly, the rates of parton production are found to be insensitive to the baryo-chemical potential particularly when the plasma is unsaturated although the process of chemical equilibration strongly depends on it. The thermal photon yields, have been calculated specifically from unsaturated plasma at finite baryon density. The exact results obtained numerically are found to be in close agreement with the analytic expression derived using factorized distribution functions appropriate for unsaturated plasma. Further, it is shown that in the case of unsaturated plasma, the thermal photon production is enhanced with increasing baryon density both at fixed temperature and fixed energy density of the quark gluon plasma.Comment: Latex, 24 pages, 6 postscript figures. Submitted to Phys. Rev.
    • 

    corecore