100 research outputs found

    Towards an Age-Phenome Knowledge-base

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Currently, data about age-phenotype associations are not systematically organized and cannot be studied methodically. Searching for scientific articles describing phenotypic changes reported as occurring at a given age is not possible for most ages.</p> <p>Results</p> <p>Here we present the Age-Phenome Knowledge-base (APK), in which knowledge about age-related phenotypic patterns and events can be modeled and stored for retrieval. The APK contains evidence connecting specific ages or age groups with phenotypes, such as disease and clinical traits. Using a simple text mining tool developed for this purpose, we extracted instances of age-phenotype associations from journal abstracts related to non-insulin-dependent Diabetes Mellitus. In addition, links between age and phenotype were extracted from clinical data obtained from the NHANES III survey. The knowledge stored in the APK is made available for the relevant research community in the form of 'Age-Cards', each card holds the collection of all the information stored in the APK about a particular age. These Age-Cards are presented in a wiki, allowing community review, amendment and contribution of additional information. In addition to the wiki interaction, complex searches can also be conducted which require the user to have some knowledge of database query construction.</p> <p>Conclusions</p> <p>The combination of a knowledge model based repository with community participation in the evolution and refinement of the knowledge-base makes the APK a useful and valuable environment for collecting and curating existing knowledge of the connections between age and phenotypes.</p

    Associations of specific-age and decade recall body mass index trajectories with obesity-related cancer.

    Get PDF
    From Europe PMC via Jisc Publications RouterHistory: ppub 2021-05-01, epub 2021-05-05Publication status: PublishedFunder: Manchester Biomedical Research Centre; Grant(s): IS-BRC-1215-20007BackgroundExcess body fatness, commonly approximated by a one-off determination of body mass index (BMI), is associated with increased risk of at least 13 cancers. Modelling of longitudinal BMI data may be more informative for incident cancer associations, e.g. using latent class trajectory modelling (LCTM) may offer advantages in capturing changes in patterns with time. Here, we evaluated the variation in cancer risk with LCTMs using specific age recall versus decade recall BMI.MethodsWe obtained BMI profiles for participants from the Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial. We developed gender-specific LCTMs using recall data from specific ages 20 and 50 years (72,513 M; 74,837 W); decade data from 30s to 70s (42,113 M; 47,352 W) and a combination of both (74,106 M, 76,245 W). Using an established methodological framework, we tested 1:7 classes for linear, quadratic, cubic and natural spline shapes, and modelled associations for obesity-related cancer (ORC) incidence using LCTM class membership.ResultsDifferent models were selected depending on the data type used. In specific age recall trajectories, only the two heaviest classes were associated with increased risk of ORC. For the decade recall data, the shapes appeared skewed by outliers in the heavier classes but an increase in ORC risk was observed. In the combined models, at older ages the BMI values were more extreme.ConclusionsSpecific age recall models supported the existing literature changes in BMI over time are associated with increased ORC risk. Modelling of decade recall data might yield spurious associations

    A consideration of publication-derived immune-related associations in Coronavirus and related lung damaging diseases

    Get PDF
    From Springer Nature via Jisc Publications RouterHistory: received 2020-05-11, registration 2020-07-28, accepted 2020-07-28, pub-electronic 2020-08-03, online 2020-08-03, collection 2020-12Publication status: PublishedAbstract: Background: The severe acute respiratory syndrome virus SARS-CoV-2, a close relative of the SARS-CoV virus, is the cause of the recent COVID-19 pandemic affecting, to date, over 14 million individuals across the globe and demonstrating relatively high rates of infection and mortality. A third virus, the H5N1, responsible for avian influenza, has caused infection with some clinical similarities to those in COVID-19 infections. Cytokines, small proteins that modulate immune responses, have been directly implicated in some of the severe responses seen in COVID-19 patients, e.g. cytokine storms. Understanding the immune processes related to COVID-19, and other similar infections, could help identify diagnostic markers and therapeutic targets. Methods: Here we examine data of cytokine, immune cell types, and disease associations captured from biomedical literature associated with COVID-19, Coronavirus in general, SARS, and H5N1 influenza, with the objective of identifying potentially useful relationships and areas for future research. Results: Cytokine and cell-type associations captured from Medical Subject Heading (MeSH) terms linked to thousands of PubMed records, has identified differing patterns of associations between the four corpuses of publications (COVID-19, Coronavirus, SARS, or H5N1 influenza). Clustering of cytokine-disease co-occurrences in the context of Coronavirus has identified compelling clusters of co-morbidities and symptoms, some of which already known to be linked to COVID-19. Finally, network analysis identified sub-networks of cytokines and immune cell types associated with different manifestations, co-morbidities and symptoms of Coronavirus, SARS, and H5N1. Conclusion: Systematic review of research in medicine is essential to facilitate evidence-based choices about health interventions. In a fast moving pandemic the approach taken here will identify trends and enable rapid comparison to the literature of related diseases

    The challenges in data integration – heterogeneity and complexity in clinical trials and patient registries of Systemic Lupus Erythematosus

    Get PDF
    From Springer Nature via Jisc Publications RouterHistory: received 2019-09-23, accepted 2020-06-19, registration 2020-06-19, pub-electronic 2020-06-24, online 2020-06-24, collection 2020-12Publication status: PublishedFunder: Medical Research Council; doi: http://dx.doi.org/10.13039/501100000265; Grant(s): MR/M01665X/1, MR/N00583X/1Abstract: Background: Individual clinical trials and cohort studies are a useful source of data, often under-utilised once a study has ended. Pooling data from multiple sources could increase sample sizes and allow for further investigation of treatment effects; even if the original trial did not meet its primary goals. Through the MASTERPLANS (MAximizing Sle ThERapeutic PotentiaL by Application of Novel and Stratified approaches) national consortium, focused on Systemic Lupus Erythematosus (SLE), we have gained valuable real-world experiences in aligning, harmonising and combining data from multiple studies and trials, specifically where standards for data capture, representation and documentation, were not used or were unavailable. This was not without challenges arising both from the inherent complexity of the disease and from differences in the way data were captured and represented across different studies. Main body: Data were, unavoidably, aligned by hand, matching up equivalent or similar patient variables across the different studies. Heterogeneity-related issues were tackled and data were cleaned, organised and combined, resulting in a single large dataset ready for analysis. Overcoming these hurdles, often seen in large-scale data harmonization and integration endeavours of legacy datasets, was made possible within a realistic timescale and limited resource by focusing on specific research questions driven by the aims of MASTERPLANS. Here we describe our experiences tackling the complexities in the integration of large, diverse datasets, and the lessons learned. Conclusions: Harmonising data across studies can be complex, and time and resource consuming. The work carried out here highlights the importance of using standards for data capture, recording, and representation, to facilitate both the integration of large datasets and comparison between studies. Where standards are not implemented at the source harmonisation is still possible by taking a flexible approach, with systematic preparation, and a focus on specific research questions

    Identifying developments over a decade in the digital health and telemedicine landscape in the UK using quantitative text mining

    Get PDF
    The use of technologies that provide objective, digital data to clinicians, carers, and service users to improve care and outcomes comes under the unifying term Digital Health. This field, which includes the use of high-tech health devices, telemedicine and health analytics has, in recent years, seen significant growth in the United Kingdom and worldwide. It is clearly acknowledged by multiple stakeholders that digital health innovations are necessary for the future of improved and more economic healthcare service delivery. Here we consider digital health-related research and applications by using an informatics tool to objectively survey the field. We have used a quantitative text-mining technique, applied to published works in the field of digital health, to capture and analyse key approaches taken and the diseases areas where these have been applied. Key areas of research and application are shown to be cardiovascular, stroke, and hypertension; although the range seen is wide. We consider advances in digital health and telemedicine in light of the COVID-19 pandemic

    Data-driven identification of endophenotypes of Alzheimer's disease progression: implications for clinical trials and therapeutic interventions

    Get PDF
    Abstract Background Given the complex and progressive nature of Alzheimer’s disease (AD), a precision medicine approach for diagnosis and treatment requires the identification of patient subgroups with biomedically distinct and actionable phenotype definitions. Methods Longitudinal patient-level data for 1160 AD patients receiving placebo or no treatment with a follow-up of up to 18 months were extracted from an integrated clinical trials dataset. We used latent class mixed modelling (LCMM) to identify patient subgroups demonstrating distinct patterns of change over time in disease severity, as measured by the Alzheimer’s Disease Assessment Scale—cognitive subscale score. The optimal number of subgroups (classes) was selected by the model which had the lowest Bayesian Information Criterion. Other patient-level variables were used to define these subgroups’ distinguishing characteristics and to investigate the interactions between patient characteristics and patterns of disease progression. Results The LCMM resulted in three distinct subgroups of patients, with 10.3% in Class 1, 76.5% in Class 2 and 13.2% in Class 3. While all classes demonstrated some degree of cognitive decline, each demonstrated a different pattern of change in cognitive scores, potentially reflecting different subtypes of AD patients. Class 1 represents rapid decliners with a steep decline in cognition over time, and who tended to be younger and better educated. Class 2 represents slow decliners, while Class 3 represents severely impaired slow decliners: patients with a similar rate of decline to Class 2 but with worse baseline cognitive scores. Class 2 demonstrated a significantly higher proportion of patients with a history of statins use; Class 3 showed lower levels of blood monocytes and serum calcium, and higher blood glucose levels. Conclusions Our results, ‘learned’ from clinical data, indicate the existence of at least three subgroups of Alzheimer’s patients, each demonstrating a different trajectory of disease progression. This hypothesis-generating approach has detected distinct AD subgroups that may prove to be discrete endophenotypes linked to specific aetiologies. These findings could enable stratification within a clinical trial or study context, which may help identify new targets for intervention and guide better care

    A Prostate Cancer Proteomics Database for SWATH-MS Based Protein Quantification

    Get PDF
    From MDPI via Jisc Publications RouterHistory: accepted 2021-11-04, pub-electronic 2021-11-08Publication status: PublishedFunder: Medical Research Council; Grant(s): MR/M008959Funder: CRUK Manchester Centre award; Grant(s): C5759/A25254Prostate cancer is the most frequent form of cancer in men, accounting for more than one-third of all cases. Current screening techniques, such as PSA testing used in conjunction with routine procedures, lead to unnecessary biopsies and the discovery of low-risk tumours, resulting in overdiagnosis. SWATH-MS is a well-established data-independent (DI) method requiring prior knowledge of targeted peptides to obtain valuable information from SWATH maps. In response to the growing need to identify and characterise protein biomarkers for prostate cancer, this study explored a spectrum source for targeted proteome analysis of blood samples. We created a comprehensive prostate cancer serum spectral library by combining data-dependent acquisition (DDA) MS raw files from 504 patients with low, intermediate, or high-grade prostate cancer and healthy controls, as well as 304 prostate cancer-related protein in silico assays. The spectral library contains 114,684 transitions, which equates to 18,479 peptides translated into 1227 proteins. The robustness and accuracy of the spectral library were assessed to boost confidence in the identification and quantification of prostate cancer-related proteins across an independent cohort, resulting in the identification of 404 proteins. This unique database can facilitate researchers to investigate prostate cancer protein biomarkers in blood samples. In the real-world use of the spectrum library for biomarker detection, using a signature of 17 proteins, a clear distinction between the validation cohort’s pre- and post-treatment groups was observed. Data are available via ProteomeXchange with identifier PXD028651

    Detection of endometrial cancer in cervico-vaginal fluid and blood plasma:leveraging proteomics and machine learning for biomarker discovery

    Get PDF
    BACKGROUND: The anatomical continuity between the uterine cavity and the lower genital tract allows for the exploitation of uterine-derived biomaterial in cervico-vaginal fluid for endometrial cancer detection based on non-invasive sampling methodologies. Plasma is an attractive biofluid for cancer detection due to its simplicity and ease of collection. In this biomarker discovery study, we aimed to identify proteomic signatures that accurately discriminate endometrial cancer from controls in cervico-vaginal fluid and blood plasma.METHODS: Blood plasma and Delphi Screener-collected cervico-vaginal fluid samples were acquired from symptomatic post-menopausal women with (n = 53) and without (n = 65) endometrial cancer. Digitised proteomic maps were derived for each sample using sequential window acquisition of all theoretical mass spectra (SWATH-MS). Machine learning was employed to identify the most discriminatory proteins. The best diagnostic model was determined based on accuracy and model parsimony.FINDINGS: A protein signature derived from cervico-vaginal fluid more accurately discriminated cancer from control samples than one derived from plasma. A 5-biomarker panel of cervico-vaginal fluid derived proteins (HPT, LG3BP, FGA, LY6D and IGHM) predicted endometrial cancer with an AUC of 0.95 (0.91-0.98), sensitivity of 91% (83%-98%), and specificity of 86% (78%-95%). By contrast, a 3-marker panel of plasma proteins (APOD, PSMA7 and HPT) predicted endometrial cancer with an AUC of 0.87 (0.81-0.93), sensitivity of 75% (64%-86%), and specificity of 84% (75%-93%). The parsimonious model AUC values for detection of stage I endometrial cancer in cervico-vaginal fluid and blood plasma were 0.92 (0.87-0.97) and 0.88 (0.82-0.95) respectively.INTERPRETATION: Here, we leveraged the natural shed of endometrial tumours to potentially develop an innovative approach to endometrial cancer detection. We show proof of principle that endometrial cancers secrete unique protein signatures that can enable cancer detection via cervico-vaginal fluid assays. Confirmation in a larger independent cohort is warranted.FUNDING: Cancer Research UK, Blood Cancer UK, National Institute for Health Research.</p

    Distinct patterns of disease activity over time in patients with active SLE revealed using latent class trajectory models

    Get PDF
    From Springer Nature via Jisc Publications RouterHistory: received 2021-02-15, accepted 2021-07-10, registration 2021-07-15, pub-electronic 2021-07-29, online 2021-07-29, collection 2021-12Publication status: PublishedFunder: Medical Research Council; doi: http://dx.doi.org/10.13039/501100000265; Grant(s): (MR/M01665X/1)Abstract: Background: Systemic lupus erythematosus (SLE) is a heterogeneous systemic autoimmune condition for which there are limited licensed therapies. Clinical trial design is challenging in SLE due at least in part to imperfect outcome measures. Improved understanding of how disease activity changes over time could inform future trial design. The aim of this study was to determine whether distinct trajectories of disease activity over time occur in patients with active SLE within a clinical trial setting and to identify factors associated with these trajectories. Methods: Latent class trajectory models were fitted to a clinical trial dataset of a monoclonal antibody targeting CD22 (Epratuzumab) in patients with active SLE using the numerical BILAG-2004 score (nBILAG). The baseline characteristics of patients in each class and changes in prednisolone over time were identified. Exploratory PK-PD modelling was used to examine cumulative drug exposure in relation to latent class membership. Results: Five trajectories of disease activity were identified, with 3 principal classes: non-responders (NR), slow responders (SR) and rapid-responders (RR). In both the SR and RR groups, significant changes in disease activity were evident within the first 90 days of the trial. The SR and RR patients had significantly higher baseline disease activity, exposure to epratuzumab and activity in specific BILAG domains, whilst NR had lower steroid use at baseline and less change in steroid dose early in the trial. Conclusions: Longitudinal nBILAG scores reveal different trajectories of disease activity and may offer advantages over fixed endpoints. Corticosteroid use however remains an important confounder in lupus trials and can influence early response. Changes in disease activity and steroid dose early in the trial were associated with the overall disease activity trajectory, supporting the feasibility of performing adaptive trial designs in SLE

    Detection of endometrial cancer in cervico-vaginal fluid and blood plasma:leveraging proteomics and machine learning for biomarker discovery

    Get PDF
    BACKGROUND: The anatomical continuity between the uterine cavity and the lower genital tract allows for the exploitation of uterine-derived biomaterial in cervico-vaginal fluid for endometrial cancer detection based on non-invasive sampling methodologies. Plasma is an attractive biofluid for cancer detection due to its simplicity and ease of collection. In this biomarker discovery study, we aimed to identify proteomic signatures that accurately discriminate endometrial cancer from controls in cervico-vaginal fluid and blood plasma.METHODS: Blood plasma and Delphi Screener-collected cervico-vaginal fluid samples were acquired from symptomatic post-menopausal women with (n = 53) and without (n = 65) endometrial cancer. Digitised proteomic maps were derived for each sample using sequential window acquisition of all theoretical mass spectra (SWATH-MS). Machine learning was employed to identify the most discriminatory proteins. The best diagnostic model was determined based on accuracy and model parsimony.FINDINGS: A protein signature derived from cervico-vaginal fluid more accurately discriminated cancer from control samples than one derived from plasma. A 5-biomarker panel of cervico-vaginal fluid derived proteins (HPT, LG3BP, FGA, LY6D and IGHM) predicted endometrial cancer with an AUC of 0.95 (0.91-0.98), sensitivity of 91% (83%-98%), and specificity of 86% (78%-95%). By contrast, a 3-marker panel of plasma proteins (APOD, PSMA7 and HPT) predicted endometrial cancer with an AUC of 0.87 (0.81-0.93), sensitivity of 75% (64%-86%), and specificity of 84% (75%-93%). The parsimonious model AUC values for detection of stage I endometrial cancer in cervico-vaginal fluid and blood plasma were 0.92 (0.87-0.97) and 0.88 (0.82-0.95) respectively.INTERPRETATION: Here, we leveraged the natural shed of endometrial tumours to potentially develop an innovative approach to endometrial cancer detection. We show proof of principle that endometrial cancers secrete unique protein signatures that can enable cancer detection via cervico-vaginal fluid assays. Confirmation in a larger independent cohort is warranted.FUNDING: Cancer Research UK, Blood Cancer UK, National Institute for Health Research.</p
    • …
    corecore