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Abstract

Background: Excess body fatness, commonly approximated by a one-off determination of body mass index (BMI),
is associated with increased risk of at least 13 cancers. Modelling of longitudinal BMI data may be more informative
for incident cancer associations, e.g. using latent class trajectory modelling (LCTM) may offer advantages in
capturing changes in patterns with time. Here, we evaluated the variation in cancer risk with LCTMs using specific
age recall versus decade recall BMI.

Methods: We obtained BMI profiles for participants from the Prostate, Lung, Colorectal and Ovarian Cancer
Screening Trial. We developed gender-specific LCTMs using recall data from specific ages 20 and 50 years (72,513 M;
74,837 W); decade data from 30s to 70s (42,113 M; 47,352 W) and a combination of both (74,106 M, 76,245 W). Using
an established methodological framework, we tested 1:7 classes for linear, quadratic, cubic and natural spline
shapes, and modelled associations for obesity-related cancer (ORC) incidence using LCTM class membership.

Results: Different models were selected depending on the data type used. In specific age recall trajectories, only
the two heaviest classes were associated with increased risk of ORC. For the decade recall data, the shapes
appeared skewed by outliers in the heavier classes but an increase in ORC risk was observed. In the combined
models, at older ages the BMI values were more extreme.

Conclusions: Specific age recall models supported the existing literature changes in BMI over time are associated
with increased ORC risk. Modelling of decade recall data might yield spurious associations.
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Background
Excess body fatness, commonly approximated by body
mass index (BMI), is a risk factor for several cancer
types. In 2016, the International Agency for Research on
Cancer (IARC) reviewed the epidemiological literature
concluding that there was sufficient evidence to link
BMI with increased risk in at least 13 cancer types

including colon and rectal, postmenopausal breast,
endometrium, ovary, liver, gallbladder, pancreas, gastric
cardia, kidney, thyroid cancers, oesophageal adenocar-
cinoma, meningioma and multiple myeloma [1]. There
are biologically plausible mechanisms underpinning
these associations [2]. However, the majority of this evi-
dence is based on one-off determination of BMI, typic-
ally in middle adulthood. These may not be reflective of
the long-term exposure of excess body fatness and fails
to capture, for example, what the BMI value was enter-
ing adulthood (in turn, reflecting childhood excess body
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fatness), rates of changes in BMI, and when changes in
BMI occurred in the life course.
Modelling of longitudinal BMI data may be more in-

formative for incident cancer associations. There are
various methods to do this ranging from simply aver-
aging relative or absolute changes over time [3]; to cap-
turing metrics of years of excess body fatness [4, 5] to
more advanced modelling, such as k-mean clustering
[6], mixed-effect modelling [7], and latent class trajec-
tory models (LCTMs). This study utilises LCTM, a mod-
elling approach that simplifies heterogeneous
populations into more homogeneous clusters or classes
over time. LCTMs allow for the inclusion of random ef-
fects to allow for individual variation within these classes
[8]. These models are increasingly reported in cancer
epidemiology and have been used in association studies
of repeated BMI measures with the following endpoints:
cancer incidence (multiple cancer types [9], gastro-
oesophageal [10], prostate [11], and cancer mortality [9].
The approach of LCTM has the potential advantage of

data-driven unsupervised modelling but is disadvantaged
by measurement errors in repeated sampling of the ex-
posure of interest. Specifically, for body fatness, BMI de-
terminants are derived from recall. This is seldom
validated. In turn, recall weight might be specific age
(e.g. age 20 years [12]) or decade recall [13] (e.g. age in
your 20s). To our knowledge, there is no study examin-
ing whether specific age recall BMI differs to decade re-
call measures. Here, we used the Prostate, Lung,
Colorectal and Ovarian (PLCO) Cancer Screening Trial
to evaluate the variation in cancer risk with LCTMs
using specific age recall versus decade recall BMI.

Methods
Study population
Between 1993 and 2001, the PLCO study enrolled 154,
897 participants (76,682 men, 78,215 women) from mul-
tiple cancer screening centres across the USA. The de-
sign of this study has been previously detailed [14].
Briefly, participants were randomized to an intervention
or usual care arm. Those in the intervention arm re-
ceived up to 6 annual cancer screening tests whereas
those in the usual care arm followed standard proce-
dures. A supplemental questionnaire (SQX) was added
between 2006 and 2008 and mailed to both arms of the
trial, 87% of the original cohort responded [15].
From the baseline PLCO cohort the initial age range

at recruitment was 55–74, however as SQX was added
several years later we removed those aged over 80 (6920
from the SQX dataset) as changes in weight could be
due to muscle wastage or other aging related factors,
those with no baseline BMI (7231 from baseline cohort,
3952 from SQX) and those with an implausible BMI
outside the range of 15–60 kg/m2 (5 from SQX cohort).

BMI ascertainment
Upon study entry participants were asked to provide
current height and body weight, as well as recall these
metrics for ages 20 and 50. BMI was then calculated for
each time point (weight [kg] / height [m]2). As part of
the SQX participants were asked to recall their weight
when they were in their 30s, 40s, 50s, 60s and 70s,
(“Please estimate your weight when you were [in your
30s]. (Exclude any periods when you were pregnant).”)
as well as provide their current weight and height. BMI
was then calculated for each decade. Therefore, for spe-
cific age recalls, a maximum of 3 BMI measures per par-
ticipant were used (with a mean of 2.99), for decade
recalls a maximum of 6 (mean of 5.48), and for the com-
bined model, 9 potential BMI measures.

Ascertainment of cancer incidence
Cancer incidence was monitored through annual follow
up questionnaires until 2010 and cancers reported on
these questionnaires underwent a confirmation process,
in which relevant medical records were obtained to ver-
ify the diagnosis and ICD-0 code of the cancer. From
2011, participants were switched to follow up via passive
linkage to cancer registries and the National Death
Index [16].
To illustrate how different latent class assignment can

affect the reported risk of an ORC, we determined inci-
dent risk of 12 IARC ORCs (listed in Supplementary
Table 1, multiple myeloma was excluded as this diagno-
sis is not well-captured in ICD codes).

LCTM development
Using the identified BMI measures, we derived LCTMs
with ORC, as the outcome measure, separately in men
and women, for specific age recall only (Subset A), decade
recall only (Subset B) and all measures (Subset C). For
the models in Subset C, a variable indicating whether the
BMI measure was specific recall or decade recall was in-
cluded as a covariate, as was an interaction term with that
variable over time. This allowed the identification of which
sets of data were driving the final trajectories, and how the
final trajectories might change dependent on the propor-
tion of each type of recall data included in each class. This
model was then also used to determine any similar classes
that arose from Subsets A or B.
Following the published framework for developing la-

tent class trajectories [8], we developed a scoping model
for each subset to determine the random effect structure
(Supplementary Figure 2). Using these, cubic random ef-
fects were selected for all models.
For each subset, multiple trajectory shape structures

and number of latent classes (up to k = 7) were tested.
Twenty random start points were run to ensure that the
model had reached its global maximum and the log-
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likelihoods plotted to ensure that the majority had con-
verged on the same model.
As suggested by Nagin et al. [17] and other sources, we

used multiple metrics to determine which model was the
best suited to each subset of data. This included the aver-
age probability of assignment (APPA), odds of correct
classification (OCC), relative entropy and the Bayesian In-
formation Criterion (BIC). The best fitting models were
then plotted to ensure clinically plausible patterns were
observed. Model discrimination was assessed through
Elsensohn’s envelope of residuals and degrees of separ-
ation between the derived classes.
For both men and women in all subsets, linear, quad-

ratic, and cubic models were fitted for classes 1:7. In all
models cubic k = 7 did not converge, justifying our cut off
point for number of classes tested. Due to the data struc-
ture, a natural spline model was also fitted for Subset B
with knots at 30s, 40s and 50s, and Subset C with knots
at 40s,50s and 60s.
As more classes were added to the models, the BIC for

each shape decreased so the “elbow” criterion was applied
to determine the best fit, along with performance in other
metrics. In Subset A, a cubic model with 5 classes was se-
lected for both men and women. In Subset B, a 7-class
natural spline model in men, and a 6-class natural spline
model was chosen in women. Finally, for Subset C a 4-
class natural spline model was chosen for men and a cubic
4 class model chosen for women.
Baseline characteristics are described for Subset C by

final LCTM class in Supplementary Tables 2 and 3.

Time to event analyses
To assess how each latent class was linked to ORC inci-
dence and how difference in model selection could affect
the reported incident risk, we fitted Cox proportional haz-
ards models, with age in years as the time metric, adjusted
for smoking status at baseline (current, former, never) and
baseline hazards stratified by age category at study entry
in five-year intervals. From this we estimated hazard ratios
(HRs) and 95% confidence intervals (CI) of the association
of each class to ORC.
As there are several confounding factors between obes-

ity and cancer, a secondary Cox model was fitted to also
include diabetic status, presence of a heart condition, edu-
cational level, race, family history of cancer, NSAID use
(aspirin or ibuprofen), and in women Hormone Replace-
ment Therapy (HRT) status.
All statistical analysis was undertaken in R (version 3.6.0)

using the lcmm package to develop the LCTMs and the
LCTMtools package to examine model performance.

Sensitivity analysis
All final models were re-run with only participants
assigned to each class with a posterior probability of >

80% to confirm that the model shapes remained stable
when including only those participants with a higher
class assignment certainty.

Results
We included those with at least 2 BMI measures, result-
ing in a population of 147,350.
(72,513M; 74,837W) for Subset A, 89,465 (42,113M;

47,352W) for Subset B and 150,351 (74,106M; 76,245
W) for Subset C. Subset C has the highest number as
those who were excluded in Subset A or Subset B for
only having one measure, but had one response in both
the baseline and supplementary surveys could then be
included in the combined model. The flow diagram is
detailed in Supplementary Figure 1. A minimum of 2
data points was used as LCTMs are very adept at dealing
with missing data, and this meant that the maximum
amount of data could be included. (e.g. in Subset A,
where if one data point was excluded all data for that in-
dividual would also otherwise be excluded) without
allowing complete reliance on the model to predict the
entire trajectory for that individual if only 1 data point
was included.

BMI trajectories derived from specific age recall data
(subset a)
In subset A, cubic models with 5 classes were selected
for both men and women. In men (Fig. 1a), the model
comprised the following classes with time: “lean stable”
starting and remaining normal weight over time; “lean
increase”, starting normal weight and gaining weight;
“medium stable” starting and remaining overweight;
“medium increase”, starting overweight and gaining
weight until 60s before losing weight by 80; and “heavy
increase”, starting overweight and gaining weight until
40s and maintaining obese status.
In women (Fig. 1b), the best-fit model identified trajec-

tories different than those in men. These comprised the
following classes with time: “lean s shaped”, starting bor-
derline underweight and gaining weight, then losing
weight after 70 years of age; “lean small increase”, gain-
ing weight but remaining normal weight; “lean moderate
increase”, gaining weight and becoming overweight
around 60s; “lean heavy s shaped”, gaining weight and
becoming obese at 60 years of age, then losing weight to
become borderline overweight/normal weight by 80
years of age; and “heavy increase”, similar to men.

BMI trajectories derived from decade recall (subset B)
In subset B analyses, seven classes were identified in
men, and six identified in women, both in a splenic
shape. In men (Fig. 1c), we identified the following clas-
ses over time:
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Fig. 1 Derived BMI Trajectories in both men and women using differently collected BMI measures. Panels a and b show trajectories derived from
specific age recall BMI measures, c and d show trajectories derived from decade recall BMI measures, and e and f show trajectories derived from
all BMI data. All show a 95% confidence interval for participant assignment to each class
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“lean increase” and a “medium s shaped”, who gained
weight becoming obese by 50s, then losing weight into
the overweight category, only to gain weight again
around 70s; “medium increase”, who gained weight over
time, and a “medium delayed n shaped” class, who
remained overweight until 60s, gained weight and subse-
quently lost it; a new “double peak” class, gaining weight
until 30s, losing it, then gaining more weight by 60s,
peaking at morbidly obese before rapid weight loss;
“heavy s-shaped”, gaining weight to become obese by
40s, losing some weight and then re-gaining weight after
60s; and “heavy s shaped increase”, gaining weight from
40s, losing it by 60s, and rapidly re-gaining.
In women (Fig. 1d), some similar classes emerged, with

the “lean increase”, “medium increase”, “medium delayed
n shaped”, “heavy s shaped increase”, “double peak”,
“heavy s-shaped” showing similarities to those seen in
men. However, the gradients of these classes and pro-
portion of the population assigned to each do differ to
the derived model in men.

BMI trajectories derived from all measurements recall
data (subset C)
We ran the same trajectory models on datasets compris-
ing of both age-specific recall data and decade recall
data. In men (Fig. 1e), we identified four splenic shaped
classes over time: “high lean stable” who were borderline
overweight constantly, “lean-heavy increase”, starting
normal weight but rapidly gaining weight becoming
overweight by 40s and eventually obese in later life;
“medium heavy increase”, gaining weight at a fast rate
becoming morbidly obese and “n-shaped”, gaining
weight to become morbidly obese by 50s and then losing
weight but remaining borderline obese.
In women (Fig. 1f), we identified four cubic shaped

classes over time: “lean moderate increase”, gaining
weight to become overweight; “lean heavy increase”
gaining weight at a high rate to became obese; “lean ex-
treme increase”, gaining weight at a rapid rate to become
obese by 50s and morbidly obese by 60s; and “n shaped”,
gaining weight until 50s, then losing weight.

Associations between classes and ORC incidence
To assess the relationships between the various identi-
fied trajectories of BMI and the risk of obesity related
cancer, we examined incidence of such cancers with tra-
jectory groups identified by each of our models. Overall,
we found that across all subsets, a stepwise increase in
ORC incidence was observed with increasing BMI trajec-
tory. When non-ORCs where examined, no significant
associations were found (Supplementary Figure 3).
In specific age recall trajectories in men, those that

were lean when younger (“lean increase” group) or

remained a constant weight (“medium stable”) had a no
significant increase in.
ORC risk relative to those in the “lean stable” group.

However, those that started as overweight and gained
weight over time had an increased risk (HR: 1.47 & 1.82
respectively) as shown in Fig. 2a. This was also seen in the
men’s model for decade recall in Fig. 2c, where all classes
heavier than the referent group were associated with an
increased ORC risk. However, here the heavier classes
have very large confidence intervals, and the association is
not significant. Finally, in the combined model (Fig. 2e), a
similar association was observed with all classes, with the
greatest risk being seen in those that gained weight at the
fastest rate (HR: 1.69, 95% CI: 1.39–2.05).
For women, a similar pattern is seen. In the specific

age recall model, again the two heavier classes have a
significant increase in ORC risk (HR: 1.23 & 1.34), al-
though this is weaker than in men for the heaviest group
(HR:1.34 vs 1.82 in men) (Fig. 2b). For decade recall,
there was again a stepwise increase in risk, although at a
lower level than observed in men (Fig. 2d). The confi-
dence intervals are still larger than the specific age recall
data, but not as large as those seen in men. The com-
bined model exhibits the same pattern as seen in the
specific age recall with a stronger association and slightly
increased confidence intervals, indicating extra noise in-
corporated into the model (Fig. 2f).

Comparison between specific age recall and decade recall
data
To compare how the data differed between specific age re-
call and decade recall and how this affected the fitted
models, the raw data assigned to each class and the pre-
dicted trajectory were plotted to assess goodness of fit. This
is shown for women in Fig. 3 (men in Supplementary Fig-
ure 4). Here Fig. 3a represents the 5-class cubic model fit-
ted for the specific age recall data, 3B for the decade recall
data and 3C for the combined data model. As shown, the
mean of the raw data (dark blue) at each recalled time point
vs the model trajectories align well for both the specific age
and combined models. However, in the decade recall trajec-
tories, the model constantly underfits the raw data, and in
the heavier more extreme classes, predicts the opposite dir-
ection of weight change. This pattern was observed in sev-
eral tested models for this data subset, with varying class
numbers and shapes, indicating that the model choice is
not the root cause of this issue.

Discussion
Main findings
Our results indicate that decade age recall data intro-
duces noise into the trajectories, with larger confidence
intervals observed both in trajectory assignment and re-
ported ORC risk. We hypothesised that six decade recall
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measures might be more informative than three age spe-
cific recall points, but this did not transpire to be the
case. This raises a note of caution for others using un-
supervised machine learning methods to cluster data,

that probabilistic methods such as LCTMs can be easily
skewed.
Secondly, the use of the decade recall data, for which

more data points were available, resulted in trajectories

Fig. 2 Time-to-event analysis for each derived trajectory class in men and women. Age specific trajectories (a and b), decade recall trajectories (c
and d) and all measures trajectories (e and f). All models adjusted for smoking status (current, former, never) and stratified by age category at
study entry (5-year groups)
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Fig. 3 Comparison of raw data class assignment vs LCTM predicted trajectory. Specific age recall model (a), decade recall model (b) and
combined model (c). Raw data for each participant assigned to the class shown in grey, with a smoothing spline fit in blue with a 95%
confidence interval. Predicted trajectory from the model shown in black
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that were clinically implausible and showed changes in
BMI that were unrealistic. This is interesting as the ori-
ginal hypothesis was that additional time points and data
would allow for more complex trends to be captured,
but also reduce the potential effect of noise. Neverthe-
less, this may also increase the risk of overfitting. Finally,
when the latent classes were tested against ORC and
non-ORC incidence, increased risk for ORC was ob-
served for the heavier trajectories, in all models, but with
varying confidence. There were no significant results for
the non-obesity related cancers. Here it was seen that
for the decade recall models, the confidence intervals
were large, and a clear pattern in risk was not as easily
observed as the specific age models. Again, this is likely
due to the wide confidence intervals for class assignment
in the model and implies that more noise is being intro-
duced in the decade recall models.

Comparisons with other studies
To our knowledge, this is the first study to examine the
differences in BMI trajectories derived from participants’
recall of their weight at a specific time point vs a
rounded (decade) time point. Although previous studies
have looked at the effects of the age at which recall
weight data is collected, these have not been examined
in the context of trajectory modelling.
It has been shown that while recalled weight is close

to the average of true weight in a population, per person
there can be large variation. This can be affected by a
person’s current weight, any past changes in weight and
current cognitive ability. For example, those that were at
the extreme ends of the spectrum (underweight, obese)
tended to normalise their results by over/under estimat-
ing their previous weight [18].
LCTMs have previously been derived in the PLCO co-

hort in men by Kelly et al. [11], however this was only
done on the specific age recall data. Here they derived 5
classes in men, compared to our six, this is likely due to
the use of specific age recall data only. When compared
to our combined model, we observed similarities for the
three largest classes. Our “lean stable” class followed the
same path as their “stable normal” class and had almost
identical proportions of the population (33% vs 34%).
The “lean increase” group we derived, was similar in tra-
jectory to the “normal-overweight” group although ours
was slightly smaller (39% vs 47%). Finally, our “medium
increase” group appeared to be similar to the “stable
overweight” group, although ours started at a lower
BMI. The final two classes in our own model and that
described by Kelly et al., are the smallest and differences
could be due to differences in model specifications and
different sample sizes (as we did not exclude those with
a prior history of cancer from the trajectory cohort, only
when deriving time to event hazard ratios).

Another study pooled the PLCO cohort with the NIH-
AARP cohort in order to derive BMI trajectories based
on the specific-age recall measures [10]. Although the
resulting trajectories were not assessed separately in
men and women, similarities between the largest three
groups, with our own results were seen. These included
a group that remains at a normal BMI over life course, a
group that starts at a normal BMI and become over-
weight, and a group that start as overweight and become
obese.
When using decade recall data to determine incident

ORC risk, we had similar findings to Lu et al. [13]. They
showed that those who put on weight in their 20s had a
higher risk than those who gained weight later on in life
(50s/60s). In our models, the BMI recorded in the 30s
appears to have the most influence over ORC risk, as
the reported risk shows a stepwise increase across BMI
class.

Strengths and limitations
There were a number of strengths to this study. Firstly,
the cohort used is well-documented and has a large sam-
ple size. Secondly, by deriving and selecting our models
following the published framework [8], we ensured that
the model best fit the data. Thirdly by using lots of sen-
sitivity analyses we determined that models we had de-
rived were robust and did not contain spurious
associations. Finally, we made good use of the richness
of the data, with up to 9 recalled BMI data points per
person used in the final combined model.
However, this study does have limited generalisability

as the majority of the population were white and well
educated. As most measures (excluding baseline) were
recalled this could have led to some bias for extreme
weight groups, although similar cohorts have mostly
found good correlation between self-reported and dir-
ectly measured anthropometric data. Finally, due to
computational constraints not all models could be run.
For example, to be comparable with other latent class
studies in the literature, testing up to 10 classes would
have been preferable, but we were restricted to 7 due to
computational power restrictions. However, the elbow
bend of the BIC indicated that for example in our spe-
cific age recall models, 4/5 classes were optimum, so it is
unlikely that classes 8–10 would have resulted in better
fitted models. It was also reassuring to see similar classes
emerging in each set of data, showing that these are
more likely “true” classes.

Unanswered questions and future research
Further work is needed to determine whether the results
generated above are study-specific or generalisable to
other datasets. Future work will be to derive these
models in other cohorts and determine whether the
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resulting trajectories are similar. Testing multiple data
sources with diverse participants would likely bring out
new classes and characteristics that are not seen in pre-
dominantly white cohorts.
In addition, there is no clear answer as to why the dec-

ade recall data is so noisy, as any outliers were removed,
and all data fell within a reasonable range. Further work
is required to assess the usability and reliability of these
and similarly noisy data, specifically for trajectory
modelling.

Conclusions
Here we show that decade recall data introduces more
noise into the model than just using specific age recall.
However, it is hard to distinguish if this is due to data
quality or just the addition of more data points (up to 6-
decade recall measures vs 3 specific age measures). This
can have an impact on reported relationship with time-
to-event outcomes and great care should be taken with
interpretation of these.
Overall, we have shown that there is evidence to sug-

gest that decade recall data does not give the same clar-
ity in modelling as specific age recall data, and would
recommend that researchers take into account how their
data is collected when interpreting the models, to pre-
vent over-reliance on a trajectory that could be due to
an inaccurate noisy training set.
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