163 research outputs found

    On Dynamic Graph Partitioning and Graph Clustering using Diffusion

    Get PDF

    Графическое сопровождение международной конференции, посвященной изучению творчества японского писателя Акутагава Рюноске

    Get PDF
    Графическое сопровождение мероприятия на Восточном факультете в 2018 годуVisual identity of the event at the Eastern faculty in 201

    Comparison and optimization of sheep in vivo intervertebral disc injury model.

    Get PDF
    Background The current standard of care for intervertebral disc (IVD) herniation, surgical discectomy, does not repair annulus fibrosus (AF) defects, which is partly due to the lack of effective methods to do so and is why new repair strategies are widely investigated and tested preclinically. There is a need to develop a standardized IVD injury model in large animals to enable comparison and interpretation across preclinical study results. The purpose of this study was to compare in vivo IVD injury models in sheep to determine which annulus fibrosus (AF) defect type combined with partial nucleus pulposus (NP) removal would better mimic degenerative human spinal pathologies. Methods Six skeletally mature sheep were randomly assigned to one of the two observation periods (1 and 3 months) and underwent creation of 3 different AF defect types (slit, cruciate, and box-cut AF defects) in conjunction with 0.1 g NP removal in three lumbar levels using a lateral retroperitoneal surgical approach. The spine was monitored by clinical CT scans pre- and postoperatively, at 2 weeks and euthanasia, and by magnetic resonance imaging (MRI) and histology after euthanasia to determine the severity of degeneration (disc height loss, Pfirrmann grading, semiquantitative histopathology grading). Results All AF defects led to significant degenerative changes detectable on CT and MR images, produced bulging of disc tissue without disc herniation and led to degenerative and inflammatory histopathological changes. However, AF defects were not equal in terms of disc height loss at 3 months postoperatively; the cruciate and box-cut AF defects showed significantly decreased disc height compared to their preoperative height, with the box-cut defect creating the greatest disc height loss, while the slit AF defect showed restoration of normal preoperative disc height. Conclusions The tested IVD injury models do not all generate comparable disc degeneration but can be considered suitable IVD injury models to investigate new treatments. Results of the current study clearly indicate that slit AF defect should be avoided if disc height is used as one of the main outcomes; additional confirmatory studies may be warranted to generalize this finding

    Interlaboratory comparison of femur surface reconstruction from CT data compared to reference optical 3D scan

    Get PDF
    Background: The present study contrasts the accuracy of different reconstructed models with distinctive segmentation methods performed by various experts. Seven research groups reconstructed nine 3D models of one human femur based on an acquired CT image using their own computational methods. As a reference model for accuracy assessment, a 3D surface scan of the human femur was created using an optical measuring system. Prior to comparison, the femur was divided into four areas;"neck and greater trochanter", "proximal metaphysis", "diaphysis", and "distal metaphysis". The deviation analysis was carried out in GEOMAGIC studio v. 2013 software. Results: The results revealed that the highest deviation errors occurred in "neck and greater trochanter" area and "proximal metaphysis" area with RMSE of 0.84 and 0.83 mm respectively. Conclusion: In conclusion, this study shows that the average deviation of reconstructed models prepared by experts with various methods, skills and software from the surface 3D scan is lower than 0.79 mm, which is not a significant discrepancy

    Orbital floor repair using patient specific osteoinductive implant made by stereolithography

    Get PDF
    The orbital floor (OF) is an anatomical location in the craniomaxillofacial (CMF) region known to be highly variable in shape and size. When fractured, implants commonly consisting of titanium meshes are customized by plying and crude hand-shaping. Nevertheless, more precise customized synthetic grafts are needed to meticulously reconstruct the patients’ OF anatomy with better fidelity. As alternative to titanium mesh implants dedicated to OF repair, we propose a flexible patient-specific implant (PSI) made by stereolithography (SLA), offering a high degree of control over its geometry and architecture. The PSI is made of biodegradable poly(trimethylene carbonate) (PTMC) loaded with 40 wt % of hydroxyapatite (called Osteo-PTMC). In this work, we developed a complete work-flow for the additive manufacturing of PSIs to be used to repair the fractured OF, which is clinically relevant for individualized medicine. This work-flow consists of (i) the surgical planning, (ii) the design of virtual PSIs and (iii) their fabrication by SLA, (iv) the monitoring and (v) the biological evaluation in a preclinical large-animal model. We have found that once implanted, titanium meshes resulted in fibrous tissue encapsulation, whereas Osteo-PMTC resulted in rapid neovascularization and bone morphogenesis, both ectopically and in the OF region, and without the need of additional biotherapeutics such as bone morphogenic proteins. Our study supports the hypothesis that the composite osteoinductive Osteo-PTMC brings advantages compared to standard titanium mesh, by stimulating bone neoformation in the OF defects. PSIs made of Osteo-PTMC represent a significant advancement for patients whereby the anatomical characteristics of the OF defect restrict the utilization of traditional hand-shaped titanium mesh
    corecore