123 research outputs found
A Convolutional Encoder Model for Neural Machine Translation
The prevalent approach to neural machine translation relies on bi-directional
LSTMs to encode the source sentence. In this paper we present a faster and
simpler architecture based on a succession of convolutional layers. This allows
to encode the entire source sentence simultaneously compared to recurrent
networks for which computation is constrained by temporal dependencies. On
WMT'16 English-Romanian translation we achieve competitive accuracy to the
state-of-the-art and we outperform several recently published results on the
WMT'15 English-German task. Our models obtain almost the same accuracy as a
very deep LSTM setup on WMT'14 English-French translation. Our convolutional
encoder speeds up CPU decoding by more than two times at the same or higher
accuracy as a strong bi-directional LSTM baseline.Comment: 13 page
Super sensitivity and super resolution with quantum teleportation
We propose a method for quantum enhanced phase estimation based on continuous
variable (CV) quantum teleportation. The phase shift probed by a coherent state
can be enhanced by repeatedly teleporting the state back to interact with the
phase shift again using a supply of two-mode squeezed vacuum states. In this
way, both super resolution and super sensitivity can be obtained due to the
coherent addition of the phase shift. The protocol enables Heisenberg limited
sensitivity and super- resolution given sufficiently strong squeezing. The
proposed method could be implemented with current or near-term technology of CV
teleportation.Comment: 5 pagers, 3 figure
The 2013 KIT Quaero Speech-to-Text System for French
This paper describes our Speech-to-Text (STT) system for French, which was developed as part of our efforts in the Quaero program for the 2013 evaluation. Our STT system consists of six subsystems which were created by combining multiple complementary sources of pronunciation modeling including graphemes with various feature front-ends based on deep neural networks and tonal features. Both speaker-independent and speaker adaptively trained versions of the systems were built. The resulting systems were then combined via confusion network combination and crossadaptation. Through progressive advances and system combination we reach a word error rate (WER) of 16.5% on the 2012 Quaero evaluation data
Distributed quantum sensing in a continuous variable entangled network
Networking plays a ubiquitous role in quantum technology. It is an integral
part of quantum communication and has significant potential for upscaling
quantum computer technologies that are otherwise not scalable. Recently, it was
realized that sensing of multiple spatially distributed parameters may also
benefit from an entangled quantum network. Here we experimentally demonstrate
how sensing of an averaged phase shift among four distributed nodes benefits
from an entangled quantum network. Using a four-mode entangled continuous
variable (CV) state, we demonstrate deterministic quantum phase sensing with a
precision beyond what is attainable with separable probes. The techniques
behind this result can have direct applications in a number of primitives
ranging from biological imaging to quantum networks of atomic clocks
Leveraging Demonstrations with Latent Space Priors
Demonstrations provide insight into relevant state or action space regions,
bearing great potential to boost the efficiency and practicality of
reinforcement learning agents. In this work, we propose to leverage
demonstration datasets by combining skill learning and sequence modeling.
Starting with a learned joint latent space, we separately train a generative
model of demonstration sequences and an accompanying low-level policy. The
sequence model forms a latent space prior over plausible demonstration
behaviors to accelerate learning of high-level policies. We show how to acquire
such priors from state-only motion capture demonstrations and explore several
methods for integrating them into policy learning on transfer tasks. Our
experimental results confirm that latent space priors provide significant gains
in learning speed and final performance. We benchmark our approach on a set of
challenging sparse-reward environments with a complex, simulated humanoid, and
on offline RL benchmarks for navigation and object manipulation. Videos, source
code and pre-trained models are available at the corresponding project website
at https://facebookresearch.github.io/latent-space-priors .Comment: Published in Transactions on Machine Learning Research (03/2023
Towards Knowledge-Based Personalized Product Description Generation in E-commerce
Quality product descriptions are critical for providing competitive customer
experience in an e-commerce platform. An accurate and attractive description
not only helps customers make an informed decision but also improves the
likelihood of purchase. However, crafting a successful product description is
tedious and highly time-consuming. Due to its importance, automating the
product description generation has attracted considerable interests from both
research and industrial communities. Existing methods mainly use templates or
statistical methods, and their performance could be rather limited. In this
paper, we explore a new way to generate the personalized product description by
combining the power of neural networks and knowledge base. Specifically, we
propose a KnOwledge Based pErsonalized (or KOBE) product description generation
model in the context of e-commerce. In KOBE, we extend the encoder-decoder
framework, the Transformer, to a sequence modeling formulation using
self-attention. In order to make the description both informative and
personalized, KOBE considers a variety of important factors during text
generation, including product aspects, user categories, and knowledge base,
etc. Experiments on real-world datasets demonstrate that the proposed method
out-performs the baseline on various metrics. KOBE can achieve an improvement
of 9.7% over state-of-the-arts in terms of BLEU. We also present several case
studies as the anecdotal evidence to further prove the effectiveness of the
proposed approach. The framework has been deployed in Taobao, the largest
online e-commerce platform in China.Comment: KDD 2019 Camera-ready. Website:
https://sites.google.com/view/kobe201
Mobile sensor data anonymization
Data from motion sensors such as accelerometers and gyroscopes embedded in our devices can reveal secondary undesired, private information about our activities. This information can be used for malicious purposes such as user identification by application developers. To address this problem, we propose a data transformation mechanism that enables a device to share data for specific applications (e.g.~monitoring their daily activities) without revealing private user information (e.g.~ user identity). We formulate this anonymization process based on an information theoretic approach and propose a new multi-objective loss function for training convolutional auto-encoders~(CAEs) to provide a practical approximation to our anonymization problem. This effective loss function forces the transformed data to minimize the information about the user's identity, as well as the data distortion to preserve application-specific utility. Our training process regulates the encoder to disregard user-identifiable patterns and tunes the decoder to shape the final output independently of users in the training set. Then, a trained CAE can be deployed on a user's mobile device to anonymize sensor data before sharing with an app, even for users who are not included in the training dataset. The results, on a dataset of 24 users for activity recognition, show a promising trade-off on transformed data between utility and privacy, with an accuracy for activity recognition over 92%, while reducing the chance of identifying a user to less than 7%
- …