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ARTICLE OPEN

Super sensitivity and super resolution with quantum
teleportation
J. Borregaard 1, T. Gehring2, J. S. Neergaard-Nielsen2 and U. L. Andersen2

We propose a method for quantum enhanced phase estimation based on continuous variable (CV) quantum teleportation. The
phase shift probed by a coherent state can be enhanced by repeatedly teleporting the state back to interact with the phase shift
again using a supply of two-mode squeezed vacuum states. In this way a sequential protocol exhibiting both super-resolution and
super-sensitivity can be obtained due to the coherent addition of the phase shift. The protocol enables Heisenberg-limited
sensitivity and super-resolution given sufficiently strong squeezing. The proposed method could be implemented with current or
near-term technology of CV teleportation.

npj Quantum Information            (2019) 5:16 ; https://doi.org/10.1038/s41534-019-0132-4

INTRODUCTION
Quantum correlations can be used in a number of ways to
enhance metrological performance.1–4 Highly entangled states
such as NOON and GHZ states can enable Heisenberg-limited
sensitivity yielding a square root improvement with the number of
probes over the standard quantum limit (SQL).5–7 This kind of
improvement is particularly useful when probing fragile systems
where photon damage limits the allowed number of probe
photons. This can be the case in, e.g., measuring of biological
systems8–10 or cold trapped atoms.11 While this effect has been
demonstrated in experiments for small probe sizes,11–14 scaling up
the size of the entangled states remains a technological barrier
due to their fragility to loss and noise. Other strategies based on
the more experimentally accessible squeezed vacuum states have
also shown to beat the SQL in various settings.15–20 An alternative
strategy is to perform multi-pass protocols with a single probe.
This enables both Heisenberg-limited sensitivity and super-
resolution21 for phase estimation without entangled resources
by applying the phase shift to the same probe multiple times.22–24

Its experimental demonstration was realized by surrounding the
phase shift system with mirrors to measure a transversally
distributed phase shift25 or an image26 with Heisenberg-limited
sensitivity. While these approaches have demonstrated the effect
of sub-shot noise scaling without entanglement, both demonstra-
tions were based on post-selection, rendering the efficiency very
low. In addition, the former demonstration could only measure a
transversally distributed phase shift requiring a sample size much
larger than the beam size. The key problem is that the number of
passes through the sample needs to be carefully controlled. For
mirror-based approaches, this may be obtained with fast
integrated optical routing on the timescale of the roundtrip time
between mirrors, which can be very challenging experimentally.
Here we propose a fundamentally different method based on

quantum teleportation for realizing quantum enhanced phase
measurements. The essence of our proposal is to repeatedly
teleport back the probe to coherently apply the phase shift

multiple times (see Fig. 1), thus effectively realizing a multi-pass
protocol. This circumvents the need for physically redirecting a
probe state to the same phase shift multiple times and allows to
keep the entangled resources separate from the potentially lossy
phase shifting system. Compared to the mirror-based approach,
no fast optical routing is required and the setup is more flexible in
not having to be confined in between mirrors. We describe how
this protocol can be implemented with current technology of
continuous variable teleportation using two-mode squeezed
vacuum states and an initial coherent state as a probe.

RESULTS
In the general setup, we consider some initial probe in a state |ψ0〉
which is subject to an unknown phase shift described by a unitary
UðϕÞ ¼ eiϕn̂, where n̂ is the photon number operator. The goal is
to estimate the phase ϕ. After the interaction, an entangled state
is used to teleport the output state U(ϕ)|ψ0〉 back to interact with
the phase shift again. This process is then iterated m times. If the
teleportation is perfect, this would correspond to the transforma-
tion |ψ0〉→ (U(ϕ))(m+1)|ψ0〉= U((m+ 1)ϕ)|ψ0〉 of the input state
where m is the number of teleportations. By coherently applying
the phase (m+ 1) times, the signal can have both super-resolution
and super-sensitivity since it will now depend on (m+ 1)ϕ instead
of just ϕ.22,23

As a physical realization of this protocol, we consider the setup
illustrated in Fig. 1 where consecutive two-mode squeezed
vacuum states are supplied by interferring the output of two
single-mode squeezed vacuum sources on a balanced beam
splitter.27 One mode is delayed in a fiber and will subsequently be
subject to an unknown phase shift described by the unitary U(ϕ).
Feedback based on previous measurements is applied before the
phase shift. This feedback can be implemented by mixing in an
auxiliary laser field using a high transmission beam splitter.27 The
delay (T) is chosen such that the phase shifted mode is interfered
with the first mode of the subsequent two-mode squeezed

Received: 27 July 2018 Accepted: 21 January 2019

1QMATH, Department of Mathematical Sciences, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark and 2Center for Macroscopic Quantum States
(bigQ), Department of Physics, Technical University of Denmark, Fysikvej, 2800 Kgs. Lyngby, Denmark
Correspondence: J. Borregaard (jborregaard@math.ku.dk)

www.nature.com/npjqi

Published in partnership with The University of New South Wales

http://orcid.org/0000-0003-2544-4073
http://orcid.org/0000-0003-2544-4073
http://orcid.org/0000-0003-2544-4073
http://orcid.org/0000-0003-2544-4073
http://orcid.org/0000-0003-2544-4073
https://doi.org/10.1038/s41534-019-0132-4
mailto:jborregaard@math.ku.dk
www.nature.com/npjqi


vacuum state on a balanced beam splitter before measurement.
The setup, which is similar to a Mach–Zehnder interferometer with
feedback, is inspired by ref. 28 where the generation of continuous
variable (CV) cluster states is demonstrated. As demonstrated in
ref. 28, the squeezed light can be produced using optical
parametric oscillation (OPO). Binning the temporal modes such
that T is larger than the inverse bandwidth of the OPO results in
independent squeezed temporal modes. We choose the measure-
ments and the feedback such that the CV teleportation protocol of
ref. 29 is realized. In this teleportation protocol, the momentum
quadrature of one of the output modes and the position
quadrature of the other is measured, which can be achieved with
homodyne detection in a single-shot measurement. The feedback
consists of quadrature displacement based on the measurement
outcomes. For perfect teleportation, infinitely many photons are,
in principle, needed in the two-mode squeezed vacuum states.
The number of photons actually obtaining the phase shift will
nonetheless only depend on the initial input state. For situations
where the phase shift is obtained by interaction with a
photosensitive system,8–11 the effective number of probe photons
interacting with the system is the limited resource. This number
will be � ðmþ 1Þn0 where n0 is the number of photons in the
initial state. We will show that Heisenberg-limited sensitivity in
terms of probe photons can be reached with a simple coherent
state as input state. Furthermore, the phase resolution can be
enhanced by a factor of m+ 1.
We consider a coherent state |−iα〉 as the initial probe state |ψ0〉

α 2 Rð Þ. In the setup of Fig. 1, we can input the initial state by
displacing the initial vacuum mode of the lower arm using the
feedback laser. After the interaction of U(ϕ), the state will be |
−iαeiϕ〉. This state is now teleported back to the second mode of
the first two-mode squeezed vacuum state following the CV
protocol of ref. 29 The two-mode squeezed vacuum state has

squeezing parameter r such that x̂2 � x̂3ð Þ2
D E

¼ e�2r=2, where x̂2,
x̂3 are the position quadratures for the two modes. The first mode
of the two-mode squeezed vacuum state is mixed with the probe
state on the balanced beam splitter before measurement. The
output modes of the beam splitter have position quadratures x̂01 ¼ðx̂1 þ x̂2Þ=

ffiffiffi
2

p
and x̂02 ¼ ðx̂1 � x̂2Þ=

ffiffiffi
2

p
with similar expressions for

the momentum quadratures. Here x̂1 is the position quadrature of
the probe state. The quadratures p̂01 and x̂02 are measured giving
measurement outcomes fp01; x02g. The feedback then implements
the displacements x̂3 ! x̂03 ¼ x̂3 þ gx

ffiffiffi
2

p
x02 and

p̂3 ! p̂03 ¼ p̂3 þ gp
ffiffiffi
2

p
p01, which concludes the teleportation pro-

tocol of ref. 29

The feedback displaces the quadratures such that the
teleported state, ψ1 will be close to |−iαeiϕ〉. The quality of the
teleportation will depend on the amount of squeezing contained
in the two-mode squeezed vacuum state and the feedback
strength quantified by the gains gx and gp. In the limit of high
squeezing, perfect teleportation is obtained for gx= gp= 1. The
protocol now repeats itself m times corresponding to m
teleportations being performed. At the end of the protocol, the
squeezed light sources should be switched off such that the final
teleported state |ψm〉 is not mixed with any two-mode squeezed
states before measurement. The teleported state |ψm〉 is subject to
the phase shift resulting in state ψ0

m

�� � ¼ UðϕÞ ψmj i. This state is
split by the 50:50 beams splitter (with vacuum in the other input
port) and the position quadratures of the output modes are
measured and classically added with equal weight of 1=

ffiffiffi
2

p
. This is

equivalent to measuring the position quadrature x̂0m
� �

of ψ0
m

�� �
before the beam splitter and we can therefore simply consider this
situation. Assuming gains of gx= gp= 1, the mean and variance of
x̂0m is

x̂0m
� � ¼ ψ0

m

� ��x̂0m ψ0
m

�� � ¼ α sinððmþ 1ÞϕÞ (1)

Var x̂0m
� � ¼ ψ0

m

� �� ðx̂0mÞ2 � x̂0m
� �2� 	

ψ0
m

�� � ¼ 1þ 2me�2r

4
: (2)

It is clear from Eq. (1) that the signal exhibits super-resolution in
ϕ by a factor of (m+ 1). The sensitivity of the measurement can be
quantified as6

σm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varðx̂0mÞ

p
jδhx̂0mi=δϕj

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2me�2r

p

2ðmþ 1Þαjcosððmþ 1ÞϕÞj : (3)

Note that the sensitivity exhibits a linear decrease in the
number of teleportations m as long as |cos((m+ 1)ϕ)| ≈ 1 and the
squeezing is sufficiently strong such that 2me�2r � 1. For a
classical (SQL) strategy with m independent coherent states |−iα〉,
the sensitivity would have a scaling of / 1=ð ffiffiffiffi

m
p

αÞ. The average
number of probe photons, nj contained in the state |ψj〉 is

nj ¼ α2 þ je�2r ; (4)

thus the total average number of probe photons that have
interacted with the phase shift system will be

ntotal ¼
Xm
j¼0

nj ¼ ðmþ 1Þα2 þ 1
2
mðmþ 1Þe�2r : (5)

If the coherent state contains one photon (α= 1) on average,
we have that ntotal ¼ ðmþ 1Þ 1þ 1

2me�2r
� �

and the sensitivity is

σm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

2me�2r
� �2

1þ 2me�2rð Þ
q

2ntotaljcosððmþ 1ÞϕÞj : (6)

Thus, if me�2r � 1, the sensitivity exhibits Heisenberg scaling in
the number of probe photons for |cos((m+ 1)ϕ)| ≈ 1. This
sensitivity is similar to what could be obtained using NOON states
of (m+ 1) photons and expresses the ultimate scaling allowed by
quantum mechanics.1

Fibre delay
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(a) (b) (c) (d) (e) (f) (g)
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Fig. 1 Sketch of the setup. Two optical parametric oscillators (OPO)
output single-mode squeezed vacuum states, which can be viewed
as a consecutive train of independent squeezed temporal modes
illustrated by black dots (a). Interfering the modes on a 50:50 beam
splitter results in two-mode squeezed vacuum states shown as
connected black dots (b). The bottom modes are input to a fiber
delay so they coincide in time with the top mode of the subsequent
pair (c). The bottom mode is subject to feedback based on previous
measurements (d). This feedback can be implemented by mixing in
an auxiliary laser subject to amplitude (AM) and phase (PM)
modulation using a high transmission beam splitter (here 99:1).
The feedback is part of teleporting back the initial probe state |ψ0〉.
The teleported state undergoes a phase shift U(ϕ) (e) before being
mixed with the top mode of a two-mode squeezed vacuum pair on
a 50:50 beam splitter (f). After the beam splitter, the quadratures of
the output states are measured with homodyne detection as part of
the repeated teleportation protocol giving the classical feedback
shown with double lines (g)
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Limited squeezing
One of the dominant experimental limitations of the proposed
protocol will arguably be the amount of squeezing in the two-
mode squeezed vacuum states. This will limit how many
teleportations can be performed before the extra noise from the
imperfect teleportations will dominate the signal. We therefore
consider what the optimum strategy is given a constraint on
the amount of squeezing. In addition, we also limit the total
average number of photons that can interact with the phase shift
system. We then optimize over the number of teleportations m
and the size of the coherent probe state α to find the strategy that
provides the maximum sensitivity for these limitations. Further-
more, we also allow for arbitrary gains gx and gp. The result of the
optimization is shown in Fig. 2 where we illustrate the

performance relative to a standard coherent state protocol with
matched average photon number. For such an approach, the
sensitivity is simply σcoh ¼ 1= 2

ffiffiffiffiffiffiffiffiffiffi
ntotal

p jcosðϕÞj� �
where ntotal is the

average number of probe photons. For |cos(ϕ)| ≈ 1, the coherent
state approach exhibits sensitivity at the SQL. Figure 2 shows the
two effects of the imperfect teleportation; noise is added in the
x̂-quadrature (see Eq. (2)) and more photons are added to the
probe state (see Eq. (5)). In the minimization, the error from the
extra photons added by an imperfect teleportation has smaller
weight for higher ntotal. In the limit where ntotal � e2r , the
enhancement is � er=

ffiffiffi
2

p
and equal gains of gx= gp= 1 are

optimal. This is the limit where the extra photons added to the
probe state do not have any significant effect on the optimum
performance. We note that a similar enhancement in sensitivity
could be obtained by using a squeezed coherent state as
probe.15,30 For such protocols, the squeezed photons, however,
interact with the phase shift system, which is not the case here.
Consequently, our protocol also works in the limit ntotal � e2r

where an enhancement of � ntotale2r=2ð Þ14 can be obtained for gx
= gp= 1. Note that our numerical optimization shows that larger
enhancement can also be obtained for optimized gains in this
limit (see Fig. 2b). Finally, we note that no enhancement is
possible when rt0:35 for gx= gp= 1 since the extra amplitude
noise added by the teleportation cancels the gain in the signal
(see Eq. (3)). For optimized gains, however, there can be a small
enhancement.

Photon loss
One of the technological challenges of using highly entangled
quantum states for enhanced phase measurements is that they
are very fragile to losses. Multi-pass protocols share this fragility
since losses grow exponentially with the number of passes
through the sample.24 This means that if the losses are too high,
the sensitivity enhancement of the multi-pass protocol proposed
here will vanish. Note however that while approaches based on
NOON states rely on single photon detection, this protocol is
based on homodyne detection, which in practice is much more
efficient. Since imperfect photon detection will add to the overall
loss, this means that the effective loss may be substantially
reduced with this protocol.
We investigate the performance of the proposed protocol in

the presence of both loss acting on the probe state
corresponding to a lossy phase shift system and loss acting
on the two-mode squeezed vacuum states. Any (symmetric)
detection loss would add directly to both of these losses. We
model the losses with fictitious beam splitters where the
unused output port is traced out. To model the lossy phase shift
system, a fictitious beam splitter of transmission η1 is inserted
after the phase shift U(ϕ) (see Fig. 1). For the loss in the two-
mode squeezed vacuum state, fictitious beam splitters both
with transmission η2 are inserted for each of the modes. For
simplicity, we have assumed equal losses for both modes.
Assuming equal gains of gx= gp= 1, the signal and sensitivity
after m teleportations for {η1, η2} < 1 is

hx̂0mi ¼ αη
mþ1
2

1 sinððmþ 1ÞϕÞ (7)

σm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2η1

1�ηm1
1�η1

η2e�2r þ 1� η2ð Þ
q

2ðmþ 1Þαηmþ1
2

1 jcosððmþ 1ÞϕÞj
: (8)

As expected, the loss on the probe state (η1) enters in the
expression for the sensitivity exponentially in m, while loss on the
two-mode squeezed vacuum states (η2) only has a linear effect in
m. The effect of η2 < 1 on the sensitivity is equivalent to having a
limited squeezing of rlim ¼ � 1

2 ln η2e
�2r þ 1� η2ð Þ. This also holds

when considering the average number of total probe photons
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Fig. 2 Performance for finite squeezing. Maximum gain in sensitivity
by using the teleportation scheme compared to a classical coherent
state protocol for limited amount of squeezing (r) and fixed average
number of total photons ntotal. We have assumed that |cos((m+ 1)
ϕ)| ≈ 1. The performance is better for high ntotal because here the
photons added to the probe states by imperfect teleportation have
smaller weight compared to the extra noise added to the quadrature.
We have assumed gains of gx= gp= 1 in (a) while we have numerically
optimized the gains in (b). It is seen that in the limit ntotalte2r the
optimal gains are different from gx= gp= 1. The optimal number of
teleportations m found in the optimizations are indicated with circles,
squares and diamonds. These indicate the transitions to m ≥ 10, 100,
and 1000, respectively, on the curves
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incident on the phase shift system. For m teleportations and gains
of gx= gp= 1, we have that

ntotal ¼ 1� ηmþ1
1

1� η1
α2 þmð1� η1Þ � η1ð1� ηm1 Þ

ð1� η1Þ2
η2e

�2r þ 1� η2
� �

:

(9)

Note that by taking the limit η1→ 1 for η2= 1, Eqs. (7)–(9)
reduce to Eqs. (1), (3) and (5). If excess noise on the squeezed
states is included by mixing in thermal states of average photon
number n instead of vacuum in the fictitious beam splitters (η2),
one would have that rlim ¼ � 1

2 ln η2e
�2r þ ð1þ 2nÞð1� η2Þð Þ. We

will assume that n � 1 such that excess noise can be neglected.
To see the effect of finite losses, we again compare the protocol to
the simple coherent strategy for which σcoh ¼
1= 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η1ntotal

p jcosðϕÞj� �
in the presence of loss. The result of the

optimization is shown in Fig. 3. While a small improvement was

found by optimizing the gains, near optimal performance is
reached for gx= gp= 1. The error from losses in the two-mode
squeezed vacuum state limits the gain in the same way as finite
squeezing does for the lossless case. Consequently, when these
losses dominate the error, the enhancement is � 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� η2Þ

p
and no enhancement is possible for η2~1/2. When losses in the
probe state limit the enhancement, the optimum performance is
effectively found as a tradeoff between the

ffiffiffiffiffiffiffiffiffiffiffiffiffi
mþ 1

p
enhancement

due to the teleportation and the exponential reduction due to the
loss. As a result, we find that the enhancement is �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ð3ð1� η1ÞÞ

p
and no enhancement is possible for η1 ~ 1/3.

We note that while losses quickly reduce the enhancement, the
scheme still exhibits enhanced sensitivity compared to the
standard coherent state probe even for substantial losses.

DISCUSSION
In conclusion, we have shown how both super-sensitivity and super-
resolution can be obtained for an optical phase measurement using
continuous variable quantum teleportation based on two-mode
squeezed vacuum states. For negligible losses, the protocol
can exhibit Heisenberg-limited sensitivity (~1/N) for squeezing
2Ne�2r � 1 and increase the resolution by a factor of N, where
N is the number of probes. While this is equivalent to the
enhancement possible with N-photon NOON states and single
photon detection,6 the protocol proposed here relies on homodyne
detection, which generally is more efficient than single photon
detection. As a consequence of the super-resolution, the phase to
be estimated should, in principle, be localized within a window of
1/N to reach the Heisenberg limit as for a NOON or GHZ state
approach.1,5 However, methods developed to estimate arbitrary
phases,19,31 in particular, for NOON32 and GHZ states,33 might also
be employed in a straightforward way to this scheme. The latter
method uses GHZ states of different sizes in order to estimate the
digits of the phase allowing for arbitrary phase estimation.33 The
same technique could be employed here by operating with different
number of teleportations before readout, which effectively corre-
sponds to sending entangled states of varying sizes. We have also
studied the effect of photon loss on the scheme both for loss in the
two-mode squeezed vacuum states used for teleportation (limits the
effective squeezing) and for loss on the probes corresponding to a
lossy phase shift system. While loss quickly reduces the perfor-
mance, the protocol may still provide super-sensitivity for loss on
the order of several percent. For an effective squeezing of 13 dB
(r= 1.5), a 6 dB enhancement of the sensitivity (σ2) may be obtained
even with 10% loss in the phase shift system for ntotal= 100 using
m= 12 teleportations. For a more modest squeezing of 8 dB
(r= 0.92), a 3.5 dB enhancement may be obtained under the same
conditions with m= 6 teleportations.
While the specific protocol studied here employed CV

teleportation of a coherent state with two-mode squeezed
vacuum states, the generic setup of teleporting back a probe
state to interact with the phase shift system multiple times may be
extended to other scenarios. In particular, our method can be
easily extended to a multi-mode scheme to demonstrate
Heisenberg-limited imaging. This can be realized by replacing
the single-mode teleportation scheme with a multi-mode scheme
in which multiple higher-order spatial modes are simultaneously
teleported.34 Using such a multi-mode approach, sub-shot noise
and eventually Heisenberg-limited microscopy can be realized.
Non-Gaussian states such as photon subtracted two-mode
squeezed states35 may also be considered for enhanced
teleportation performance or different probe states providing
better single-shot estimation.7 A discrete variable variant of the
protocol could also be envisioned using one-dimensional cluster
states emitted by single quantum emitters.36 Here every second
qubit could probe the phase shift while the remaining qubits are
used to teleport the phase information.
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Fig. 3 Performance with loss. Maximum gain in sensitivity by using
the teleportation scheme compared to a classical coherent state
protocol for limited amount of squeezing (r) and fixed average
number of total photons ntotal= 100 in the presence of a loss on the
probe state (η1 < 1, η2= 1) and b loss on the two-mode squeezed
vacuum state (η1= 1, η2 < 1). The optimal number of teleportations
m decreases as the loss increases. The circles (squares) indicate the
transition where m ≥ 10 (m ≥ 100). We have assumed that |cos((m+
1)ϕ)| ≈ 1
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METHODS
We evaluate the performance of the teleportation protocol using the
Wigner functions37 of the photonic modes. The two-mode squeezed
vacuum state has Wigner function

Wsqðx2; p2; x3; p3Þ ¼ 2
π


 �2

e�e�2r ðx2þx3Þ2þðp2�p3Þ2ð Þe�e2r ðp2þp3Þ2þðx2�x3Þ2ð Þ;
(10)

with (x2, p2) and (x3, p3) describing the position and momentum
quadratures of the two modes, respectively. Photon loss and excess noise
is included by mixing both modes with thermal fields of average photon
number n on fictitious beam splitters of transmission η2 (assumed equal for
both modes). The input modes before the beam splitters are described by
the Wigner function

Wnoise;in ¼ Wsqðx2; p2; x3; p3ÞWthðx2t ; p2tÞWthðx3t ; p3tÞ; (11)

where

Wthðx; pÞ ¼ 1
π nþ 1=2ð Þ e

� 1
nþ1=2

x2þp2ð Þ
: (12)

The action of the beam splitters corresponds to making the
transformation

x2 ! ffiffiffiffiffi
η2

p
x2 þ ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� η2
p

x2t
p2 ! ffiffiffiffiffi

η2
p

p2 þ ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� η2

p
p2t

x2t ! ffiffiffiffiffi
η2

p
x2t � ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� η2
p

x2
p2t ! ffiffiffiffiffi

η2
p

p2t � ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� η2

p
p2;

(13)

in Eq. (11) together with a similar transformation for x3, p3, x3t, and p3t. The
noise modes (x2t, p2t) and (x3t, p3t) are then traced out by integration. The
resulting Wigner function describes the noisy two-mode squeezed input
states for the teleportation protocol and is denoted W in

sqðx2; p2; x3; p3Þ.
The probe state is in general described by a Gaussian Wigner function of

the form

W in
p;iðx1; p1Þ ¼ ce�αx x21�αpp21þβx1p1þλx x1þλpp1þγ: (14)

where c, αx, αp, β, λx, λp, γ are constants. For the initial coherent state probe
(|−iα〉 with Wigner function W in

p;0), we have that
c ¼ 2

π ; αx ¼ αp ¼ 2; β ¼ 0; λx ¼ 0; λp ¼ �4α; γ ¼ �2α2. The phase shift of
the probe state makes the (unknown) transformation x1→ cos(ϕ)x1+ sin
(ϕ)p1, p1→ cos(ϕ)p1− sin(ϕ)x1 in Eq. (14). Loss is modeled by subsequently
mixing with a vacuum mode (Wth with n ¼ 0) on a fictitious beam splitter
of transmission η1 and tracing out the output noise mode as with the two-
mode squeezed vacuum states. The resulting state is described by a
Wigner function Wout

p;i ðx1; p1Þ.
The noisy two-mode squeezed input states, W in

sqðx2; p2; x3; p3Þ are now
used to teleport the probe state Wout

p;i ðx1; p1Þ back to interact with the
phase shift again. The mode (x3, p3) is assumed to be the delayed mode
and the goal is thus to teleport the mode (x1, p1) back to this mode. This is
done by mixing the modes (x2, p2) and (x1, p1) on a 50:50 beam splitter,
measuring the output quadratures and providing feedback on the modes
(x3, p3). The input state before the 50:50 beam splitter has the Wigner
function

Wtel;in ¼ W in
sqðx2; p2; x3; p3ÞWout

p;i ðx1; p1Þ: (15)

The beam splitter makes the transformation

x1 ! ðx1 þ x2Þ=
ffiffiffi
2

p
; p1 ! ðp1 þ p2Þ=

ffiffiffi
2

p

x2 ! ðx1 � x2Þ=
ffiffiffi
2

p
; p2 ! ðp1 � p2Þ=

ffiffiffi
2

p (16)

in Eq. (15). The measurements of the quadratures p1 and x2 and
corresponding feedback on mode (x3,p3) are then described by first
making the transformation x3 ! x3 � gx

ffiffiffi
2

p
x2, and p3 ! p3 � px

ffiffiffi
2

p
p2 in

the Wigner function and then integrating out modes (x1, p1) and (x2, p2).
The corresponding teleported state corresponds to probe state
W in

p;iþ1ðx1; p1Þ. The process can then be repeated to get the next iteration.
After a fixed number of teleportations m, the phase shift is estimated from
measurement of 〈x1〉 for the light described by Wigner function
Wout

p;mðx1; p1Þ. All moments of x1 and p1 can be extracted from
Wout

p;mðx1; p1Þ, which makes the calculation of the sensitivity straightforward.
Note that the mean number of photons contained in the state is
nm ¼ hx21i þ hp21i � 1=2.

Numerical optimization
For arbitrary gains gx and gp, it becomes infeasible to find a closed
analytical expression for the sensitivity for an arbitrary number of
teleportations m. For Figs. 2 and 3, we have therefore numerically
minimized the sensitivity in both the number of teleportations (m), the
gains (gx, gp) (assumed fixed for each iteration), and α for given values of
the squeezing parameter (r) and photon loss (η1, η2). In the optimization,
we use the analytical expressions for the teleported state derived as
described above. By inserting the numerical values for the constants (c, αx,
αp, β, λx, λp, γ), we can repeatedly iterate the protocol and get the values of
the constants for the final Wigner function Wout

p;mðx1; p1Þ after m
teleportations. From this, the sensitivity and the mean number of probe
photons can be calculated. The optimal m, gx,gp, and α are then identified
as the ones that minimize the sensitivity under the constraint of a fixed
number of total probe photons.
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