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ABSTRACT
Data from motion sensors such as accelerometers and gyroscopes

embedded in our devices can reveal secondary undesired, private

information about our activities. This information can be used

for malicious purposes such as user identification by application

developers. To address this problem, we propose a data transfor-

mation mechanism that enables a device to share data for spe-

cific applications (e.g. monitoring their daily activities) without

revealing private user information (e.g. user identity). We formu-

late this anonymization process based on an information theo-

retic approach and propose a new multi-objective loss function for

training convolutional auto-encoders (CAEs) to provide a practical

approximation to our anonymization problem. This effective loss

function forces the transformed data to minimize the information

about the user’s identity, as well as the data distortion to preserve

application-specific utility. Our training process regulates the en-

coder to disregard user-identifiable patterns and tunes the decoder

to shape the final output independently of users in the training set.

Then, a trained CAE can be deployed on a user’s mobile device

to anonymize sensor data before sharing with an app, even for

users who are not included in the training dataset. The results, on

a dataset of 24 users for activity recognition, show a promising

trade-off on transformed data between utility and privacy, with

an accuracy for activity recognition over 92%, while reducing the

chance of identifying a user to less than 7%.

CCS CONCEPTS
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1 INTRODUCTION
Motion data from sensors in user devices can reveal private infor-

mation about users without their consent. For instance, motion

patterns can reveal the user identity for user authentication [22].

However, other untrusted applications with direct access to raw

sensory data may infer private information (e.g. inferring pass-

words from accelerometer data [24]). We are therefore interested

in designing a privacy-preserving method that gives apps an on-

device transformed version of the sensor data to prevent them to

extract sensitive information unrelated to their task while preserv-

ing task-specific patterns (see Figure 1).

Differentially private mechanisms and information theoretic

frameworks can be used to ensure privacy for data release. Although

differential privacy [8, 34] offers a strong privacy guarantee for
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Figure 1: The Anonymizer (a pre-trained convolutional au-
toencoder) transforms raw sensory data before sharing with
apps. An untrusted app can infer its required information,
but it cannot infer user’s private information. Xij is the in-
stant raw sensor data and X′ij is the corresponding trans-
formed value.

access to private datasets, it is not helpful for continuously releasing

a user’s sensor data. In fact, to design a private mechanism for

publishing data, we need to aggregate all users’ data in one place
1
.

In our case, we do not trust a data aggregator and want to run the

mechanism on the user’s devices. Moreover, The local version of

differential privacy [7, 16] is also very challenging for this setting.

For the time series of sensor data, we repeatedly observe highly

frequent patterns in consecutive data release, and applying the same

differentially private mechanism to all of the released time window

of data cannot provide a privacy guarantee, unless considerable

noise is added to each window, that would eliminate the utility of

the data in long-term data release [31].

Another approach to privacy-preserving data release is based

on information theory [17, 28], where the mutual information, be-

tween the released data and the latent information which can be

drawn from data, is considered as the measure of privacy. In this

approach, we do not necessarily need to design a noise addition

mechanism and it allows us to not only consider removing the pri-

vate information but also care about keeping the useful information

of the data [26]. To design a data release mechanism, that satisfies

both utility and privacy constraints at the same time, we make a

profit from adversarial training approaches [18]. Practically, we can

approximate the mutual information by estimating the posterior

distribution of the private variables given the released data [32],

using the adversarial training mechanisms [9]. Therefore, informa-

tion theoretic frameworks better fit our requirements of mobile

sensor data release.

Existing solutions need a trusted party to have access to users’

personal data to offer a reliable data distortion mechanism [16, 23,

35] or need to ask users to participate in a privacy-preserving train-

ing mechanism [1]. We are instead interested in anonymizing data

locally and in defining a mechanism that can be shared across users.

1
https://machinelearning.apple.com/2017/12/06/learning-with-privacy-at-scale.html

ar
X

iv
:1

81
0.

11
54

6v
2 

 [
cs

.L
G

] 
 1

9 
N

ov
 2

01
8



We formulate the problem as an optimization problem and propose

a practical method to solve it. Our method is inspired by recent

advances in adversarial training [18] for automatically discovering

the useful representations needed for a specific task from raw data.

We propose a new multi-objective loss function to train convolu-

tional auto-encoders (CAEs) [21, 33]. This loss function regulates

the transformed data to give as little information as possible about

the user’s identity; subject to minimum possible distortion in the

data to preserve the utility. Unlike other approaches [12, 13, 28, 32]

the training process not only regulates the encoder to only consider

task-specific features included in the data but also tunes the decoder

to shape the final output independent of the specific users in the

training set. Therefore, we obtained a generalized model that can be

applied to a new unseen user data, without user-specific re-training.

Finally, we evaluate the efficiency and utility-privacy trade-off of

the proposed mechanism, in comparison to other methods, on our

own collected dataset of activity recognition
2
[19].

In summary, the major contributions of this paper are to for-

mulate the problem of sensor data anonymization as an optimiza-

tion process based on information theory and consequently to

provide a new way of training deep auto-encoders by introducing

a multi-objective loss function. We show how our multi-objective

loss function approximates the desired solution to our optimization

formulation in the specific case of activity and identity recognition.

Importantly, we obtain a generalized model that can be applied to

unseen data of new users, without the need to re-train the model.

2 RELATEDWORK
Adversarial learning enables us to well approximate the underlying

distribution of a data (e.g. with generative adversarial networks

(GANs) [11]) or to model data with the well-known probability dis-

tributions (e.g. with variational auto-encoders (VAE) [14]). These

techniques have been recently applied to calculate mutual infor-

mation for solving optimization problems [9, 13, 23, 32]. The ad-

versarial approach can be used to remove sensitive information

from the latent low-dimensional representations of the data, e.g. by

removing text from images [9].

An optimal privacy mechanism can be formulated as a game

between two players, a privatizer and an adversary, with an iterative

minimax algorithm [13]. Moreover, the service provider can share

a feature extractor based on an initial training set that is then re-

trained by the user on their data and then sent back to the service

provider [23, 29]. However, in our work, we do not assume the

existence of a trusted data aggregator and have access only to a

public dataset for training. Moreover, the training cannot use the

data of all the users.

Feature maps of a Convolutional Auto-Encoder (CAE) have the

ability to extract patterns and dependencies among data points of

a vector and have shown good performance in time series anal-

ysis [36]. CAE is usually trained by minimizing the differences

(e.g. mean squared error or cross entropy) between the input and

its reconstruction [21, 33]. They compress their input into a lower-

dimensional latent representation and then reconstruct the input

from this representation. The bottleneck of the CAE forces the

optimization process to capture the most descriptive patterns in

2
https://www.kaggle.com/malekzadeh/motionsense-dataset
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Figure 2: The adversarial training framework to train the
CAE.After the training phase, we use only theCAE (Encoder
and Decoder parts) to run on the users’ device. Solid lines
show data flow and dashed lines show loss functions.

the data in order to generalize the model and prevent undesirable

memorization [20, 21]. The information bottleneck [4, 10] in the

middle layer of the CAE helps the encoding part of the CAE to

capture the main factors of variation in the data into this latent

representation. A simple way to train CAE is to randomly corrupt

the input and force the model to refine it in the reconstruction [33].

With this approach, the CAE captures the prominent patterns

and ignores the noise, so the reconstructed output does not longer

contain meaningless patterns (i.e. noise). Moreover, a latent repre-

sentation can be learned that removes some meaningful patterns
from the data to reduce the possibility of inferring sensitive in-

formation [9, 16]. However, existing methods only consider the

latent representation produced by the encoder part of CAE, and

leave intact the decoder, which contains a large amount of infor-

mation extracted from the data during training, thus limiting the

protection.

3 SENSOR DATA ANONYMIZATION
3.1 The architecture
Let

3
sensor component

4 i, at sampling instant j, generate Xij ∈ R.
Let the time series generated by M sensor components in a time

window of lengthW , be represented by matrix X ∈ RM×W , with

X =
(
Xij

)
. Let N be the number of users. Let U ∈ {0, 1}N be a

variable representing user identity. It is a one-hot vector of length

N , a vector with 1 in the k-th place and 0 in all other places if

user k generate the data X being considered. Let T ∈ {0, 1}B be

a variable representing the current activity that generates X. It is
also a one-hot vector of length B.

Let us define the data with obscured user’s identifiable infor-

mation as the anonymized sensor data, X′. We aim to produce

anonymized sensor data so that the user’s identity cannot be in-

ferred by an untrusted app that has access to the sensor to recognize

a set of B required activities. We use the concept of mutual infor-

mation to consider how much can be inferred about a particular

variable from a data set. We wish to minimize the amount the data

3
As notation we use capital bold-face, e.g. X, for random variables (univariate or

multivariate) and lowercase bold-face, e.g. x, for an instantiation; italic roman typestyle,

e.g. I, for operations or functions; sans serif typestyle in lowercase, e.g. i, for indexing;
and capital math font, e.g. M , for specific numbers such as the size of a vector.

4
Like the z axis value of the gyroscope sensor.

2

https://www.kaggle.com/malekzadeh/motionsense-dataset
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Figure 3: The overall architecture for the training procedure:
the combined model in Figure (6).
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Figure 4: The CAE architecture: Encoder and Decoder.

changes but remove the ability to infer private information from

the data.

We define I(·; ·) as the mutual information between two data

items and d(·, ·) as some distance function between two data items (for

example time series).

Definition 1. Let A(X) be some function applied to the data X
that we consider for its potential to anonymize the data. We define
the fitness function F(A(X)) of A(X) as

F(A(X)) = βU I
(
U;A(X)

)
− βTI

(
T;A(X)

)
+ βdd

(
X,A(X)

)
, (1)

where βU , βT and βd are variables that allow tuning the trade-off
between concealing the user’s identity, keeping required data and not
distorting the data. We define the anonymization function A(X)
as the function that best minimizes F(A(X)) over all possible X.

Therefore, if X′ = A(X), then the optimal A(·) transforms X
into an X′ such that X′ will contain as little information as possible

about the user’s identity, U, while maintaining activity distinctive
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Figure 5: The DecReg architecture. Same structure for En-
cReg and ActReg.

information and minimizing the distortion of the original data. Note

that, in practice, we find optimal value of βU , βτ and βd through a

cross validation process over training dataset. Moreover, we prac-

tically cannot search over all possible anonymization functions,

hence we limit the possible functions to be a deep neural network

and look for the optimal parameter set through training on the

available datasets.

In the specific implementation of this paper, we choose mean

squared error, MSE, as the distance function. MSE measures the

distance between each raw data point and the corresponding trans-

formed data point, hence it limits the anonymizer making apply

hug distortion to data points. To approximate the required mutual

information terms and based on the adversarial training approaches,

we reformulate the optimization problem in (1) as a neural network

optimization problem that is designed for training a convolutional

auto-encoder (CAE).

Definition 2. LetA(X|θ ) be a neural network, with parameter set
θ , that gets the input vectorX and transforms it to a same dimensional
output vector X′. The optimizer searches in the space of all the

3



possible parameter sets, Θ, to find optimal parameter values:

θ∗ = argmin

θ ∈Θ
βU I(U;A(X|θ )) − βT I

(
T;A(X|θ )

)
+ βdMSE(X,A(X|θ ))

(2)

where, A(·;θ∗) is the optimal estimator for general A(·) in (1).

To look for the optimal parameter set θ∗ we use backpropagation
using stochastic gradient descent. For this purpose we define a

multi-objective loss function in section 3.3.

Figure 2 shows the high-level architecture for training a CAE to

be used as the sensor data anonymizer. The Encoder mapsX into an

identity-agnostic latent representation Y by getting feedback from a

pre-trained classifier, the Encoder Regularizer, which penalizes the

Encoder if it captures information corresponding to the U into Y.
The Decoder aims to output a same-dimensional reconstruction of

the input, X′, from the Y, and gets feedback from other pre-trained

classifiers which we call them Decoder Regularizer, and Activity

Regularizer, respectively.

Figure 3 shows the overall architecture, and Figures 4, 5 show

the details of each neural network model that we have implemented

in our experiments. EncReg (Encoder Regularizer) and ActReg (Ac-

tivity Regularizer) share the same architecture as DecReg (Decoder

Regularizer). The only differences are that the shape of input for

EncReg is 32, instead of 128, and the shape of softmax output for

ActReg is 4, instead of 24.

3.2 The training
Figure 6 summarizes the training of the CAE for an activity recog-

nition task. We have two privacy regularizers, EncReg and DecReg,
the task regularizer, ActReg for τa , and the distortion regularizer, a

loss function that constrains the allowed distortion on the data.

Since convolutional layers capture locally autocorrelated and

translation invariant patterns in time series data very well [15],

EncReg, DecReg, and ActReg are convolutional neural network clas-

sifiers trained by categorical cross-entropy loss function [36] (see

Figure 5). EncReg learns to identify users by getting the latent rep-

resentation produced by the CAE (the input is Y and the output

is the identity label, U). DecReg learns to identify users by getting

the reconstructed data produced by the CAE, X′, as input (here
the output is the identity labels, U, too). ActReg learns to recognize

the activity and gets the reconstructed data, X′, as input and the

activity label, A, as output. Finally, the distortion regularizer, gets

the original data, X, and the reconstructed one, X′, to calculate

pointwise mean squared error as the distance function to measure

the amount of distortion
5
.

Instead of just training on a single epoch, like what is usual in

adversarial training [11], all the classifiers here should be trained

for some epochs, e , on the entire dataset to converge to suboptimal

information estimators for use in the next step. The reason is, the

game here is not to learn the exact data distribution, but to transform

data from an identity-centric sample space which is so informative

about users’ identity, to another activity-centric sample space which

is just informative about the underlying activity. Therefore, each

regularizer should at least converge to a suboptimal approximator

of mutual information.

5
One can choose any other distance metric based on the tasks.

After each iteration, we should evaluate the condition of the

current CAE to see if it needs one more iteration or not. Generally

speaking, we need some practical and reliable evaluation process

over validation data to check the provided utility-privacy trade-off.

We discuss more about some of these possible evaluation methods

in section 4.4.

3.3 Multi-objective loss function
After each training round, we freeze the parameters of the regu-

larizers during the training of the CAE (see Fig.2). The most im-

portant contributor to the training of the CAE is our proposed

multi-objective loss function, L, which we define as:

L = βU LU − βT LT + βdLd , (3)

where the regularization weights βU , βT , and βd determine the

utility-privacy trade-off
6
. LT and Ld are utility losses that can

be customized based on the app requirements, whereas LU is an

identity loss that helps the CAE remove user-specific signals.

LT , the categorical cross-entropy loss function for classification
7
,

aims to preserve activity-specific patterns:

LT = T log( ˆT), (4)

where T ∈ {0, 1}B is a one-hot B-dimensional vector that represents

true activity label for X; and ˆT ∈ [0, 1]B , the output of a softmax

function
8
, is a B-dimensional probability distribution vector that

predicts the activity labels.

Ld aims to keepX′ij, the output of the CAE, as similar as possible

to the input Xij:

Ld =
M∑
i=1

W∑
j=1
(Xij − X′ij)2. (5)

LU is the most important term of our multi-objective loss func-

tion:

LU = −
(
U log(1 − Û) + log

(
1 −max(Û)

) )
, (6)

where U is a one-hot N -dimensional vector that represents the true

identity label for X and Û ∈ [0, 1]N is the output of the softmax

function, the N -dimensional probability distribution vector learned

by the classifier (i.e. the probability of each user label, given the

input).

A trivial anonymization function would transform data of user

1 consistently into the data of user 2 (and vice versa). However,

this function would satisfy only the first element of LU . A desir-

able anonymization cannot allow a mapping between any users

to any other users and we want our anonymization mechanism

to transform X into X′ in such a way that no adversarial model

can confidently predict U from X′. We achieve this objective by

maximizing a measure of the difference between two distributions,

i.e. the cross entropy, between the prediction, Û, and the true iden-

tity, U. Eq. 6 minimizes the cross-entropy between the true identity

label and the regularizer’s prediction of this label, as well as the

6
In practice, we set it through a cross validation process and the sum of β values is

equal to 1.

7
For example for a fall detection app that monitors the stability of elderly people, a

binary cross-entropy can be used instead of a categorical one.

8
All entries of

ˆT add up to 1.

4



1: procedure TrainCAE( X,U,T, e) ▷ X:M ×W sections from raw data, U: identity label, T: activity labels, and e number of epochs.

2: CAE (Encoder+Decoder)← Random Initializing;

3: CAE← Train on X as both input and output for e epochs;
4: Y← Encoder(X); ▷ Y is the extracted latent representation from the raw data.

5: X′ ← X; ▷ Keep raw data intact to use it for evaluation in each iteration.

6: EncReg, DecReg, ActReg, CAE← Random Initializing;

7: do
8: EncReg← Train on Y as input and U as output using categorical cross-entropy as loss function, for e epochs;
9: EncReg← Train on X′ as input and U as output using categorical cross-entropy as loss function, for e epochs;
10: ActReg← Train on X′ as input and T as output using categorical cross-entropy as loss function, for e epochs;
11: Freeze parameters of EncReg, DecReg, and ActReg;
12: CombinedModel← The combination of CAE(Encoder+Decoder), EncReg, DecReg, and ActReg based on Figure 3;

13: CombinedModel ← Train on X′ as input and U, U, T, and X as outputs using LU , LU , LT , Ld as loss

functions, repectively, for e epochs (Figure 2);
14: Y← Encoder(X);
15: X′ ← Decoder(Y);
16: Unfreeze parameters of EncReg, DecReg, and ActReg;
17: while it satisfies the convergence conditions;

18: return CAE; ▷ The final CAE that can be used as anonymizer on users’ devices.

Figure 6: The adversarial regularization procedure to train a sensor Data Anonymizer; A(·,θ∗) in (2)

maximum value of the predicted identity vector, Û. The deriva-

tion of the third term of the multi-objective loss function, LU , is

presented in the next section.

3.4 Derivation of the identity loss
In Eq. (2), X′ is the transformed version of a user raw data whereas

U is a latent random variable, drawn from X, that determines the

identity of the user who generates X. Our goal is to make U and

X′ independent of each other.

Given X, U and X′ are conditionally independent. Therefore the

transformation U→ X→ X′ is Markovian [26] and, based on the

data processing inequality [3], the following holds:

I (U;X) ≥ I (U;X′). (7)

Processing data with a function f that aims to infer the identity

of a user does not increase the available information. Therefore

I (U;X′) ≥ I (U; f (X′)), (8)

thus ensuring that whenwe reduce themutual information between

the user’s identity and their released data, the mutual information

between their identity, defined as a random variable (see Eq. (2)),

and the outcome of any other adversarial function over the released

data will also be reduced, at least by the same amount.

Using entropy, H (·), the mutual information can be defined as

I (U;X′) = H (U) − H (U|X′). (9)

As the entropy is always non-negative and since we cannot

control H (U), to minimize I (U;X′), we can maximize H (U|X′), the
conditional entropy between identity variable and the transformed

data, which can be expressed as:

H (U|X′) = H (U,X′) − H (X′). (10)

To reduce the entropy of X′ independently of any other latent

variables, one could simply coarse-grain (e.g. downsample) the data.

However, blindly minimizing H (X′) can also lead to a substantial

utility loss. Therefore, we focus on maximizing H (U,X′).
Let p(U,X′) denote the joint distribution of U and X′; and Su

and SX′ be the supports of U and X′, respectively. Then

H (U,X′) = −
∫
Su

∫
SX′

p(U,X′) logp(U,X′). (11)

Since we cannot calculate the joint entropy directly, we need an

estimator for H (U,X′). When labeled data is available X′ can be

used as input to predict Û as an estimation of U. We can therefore

reformulate the problem of maximizing the joint entropy, H (U,X′)
into one of maximizing the cross entropy between the true variable

U and the predicted variable Û:

HÛ(U) = −
∫
SX′

U log Û. (12)

Here, we consider a multiclass classification problem, where U is

a one-hot N -dimensional vector that represents true label, and Û is

an N -dimensional probability distribution vector which is learned

by the classifier. Therefore, the empirical cross entropy formula for

a sample data X′ of user k is:

− U log Û = − log Û[K] (13)

where Û[k] is the k-th element of the vector predicted by the classi-

fier. Finally, since Û[k] ∈ [0, 1], maximizing − log Û[k] is equivalent
to minimizing − log (1 − Û[k]).

Therefore, generalizing, the first term of Eq. (6), U log(1 − Û),
estimates the mutual information, I(U;X′). In fact, by forcing the

CAE to minimize this value, we minimize the amount of user-

identifiable information included in the X′.
5



Figure 7: Latent representation, Y, in 2D of the 64D data of
gyroscope. (Left column): samples of four different activi-
ties. (Right column): Jogging data for different users. (Top
row): raw data. (Bottom row): data transformed by the CAE.

3.5 Examples
Figure 7 shows the result of using a convolutional auto-encoder

as unsupervised feature extractor to represent 64D vectors of the

gyroscope data, X, into 2D vectors, Y, by considering MSE as a

measure of the reconstruction error. In the top plot of Figure 7

we see the latent representation of raw gyroscope data extracted

by the bottleneck of the model. The distribution of Y, has useful
information to distinguish not only the activities, but more also

the user. Only using dimensionality reduction methods cannot

ensure anonymization even if we extremely reduce the dimensions.

Figure 7, bottom shows the latent representation of the anonymized

data by our method. After transformation, the data for different

users are more outspread and users are less separable from each

other, but it preserves the jogging activity from the remaining well

separable, like in the original data space
9
.

Figure 8 shows the raw data versus the transformed version of

a sample time window. The CAE obscures most of the patterns

but still keeps some differences among data of different activities.

Figure 9 compares the spectrogram of raw and transformed data

for a user in the test dataset. One can notice that the CAE intro-

duces new periodic component in the data and obscure some of the

original ones, and they differ across the activities.

9
This is an extreme representation of the data. In higher dimensions classifiers are

able to find more discerning patterns in the data to distinguish other activities.

Figure 8: Raw data versus the output of CAE for gyroscope
and accelerometer

Figure 9: Spectrogram of raw data versus the output of CAE
for one user in the test dataset.

4 EVALUATION
We assume an adversary has access to the training dataset and

knows the anonymization mechanism. Furthermore, the adversary

knows the users’ physical and demographic attributes, so they can

take advantage and use data of the most similar user in the public

dataset for their adversarial purposes.

To evaluate the effectiveness of the CAE as a data anonymizer, we

compare the trade-off between recognizing user’s activity versus

their identity, and compare with two baseline methods and the

method that have been proposed in [9] which we call it REP. We
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num. of users 24 (14 males -10 females)

sample rate 50 Hz

sensors

gyroscope

accelerometer

Features

rotationRate (x,y,z)

userAcceleration (x,y,z)

gravity (x,y,z)

attitude(roll, pitch, yaw)

Activities

(num of trails)

downstairs (3 trials )

upstairs (3 trials)

walking ( 3 trials)

jogging (2 trials)

sat ( 2 trials)

stand-up ( 2 trials)

Table 1: Details of the MotionSense datasets[19].

measure the extent to which activity recognition suffers from the

anonymization compared to having access to the raw data
10
.

4.1 Experimental Setup
The only requirement of our proposed method is to prepare a pub-

lic dataset of motion sensor time series for training purpose. The

dataset includes time series data generated by accelerometer and

gyroscope sensors collected with an iPhone 6s kept in the partici-

pant’s front pocket. A total of 24 participants in a range of gender,

age, weight, and height performed 6 activities in 15 trials in the

same environment and conditions (see Table 1).

We consider two methods of dividing the dataset into training

and test sets, namely Subject and Trial. For Subject, we put all data
of 4 of the users in the dataset, 2 females and 2 males, as test data

and the remaining 20 users’ data as training. Hence, after training

the CAE, we evaluate the model on a dataset of new unseen users.

For Trial, we put one trial data of each user as test data, and the

remaining trials of that user’s data as training. For example, we

have three different walking trials for every user, we consider one

trial as test and the other two as training; same for other activities.

In both cases, we put 20% of training data for validation during the

training phase. We repeat each experiment 5 times and report the

mean, and the standard deviation. For all the experiments we use

the magnitude value for both gyroscope and accelerometer.

To prepare the dataset ready for training, we have to choose

the length of the time window,W and a step size for this rolling-

window to move ahead over the time series. To be consistent in the

process of encoding data into a lower-dimensional representation

and then decoding it to the original dimension, it is better to set

10
All the code and data used in this paper is publicly available and can be obtained

from: https://github.com/mmalekzadeh/motion-sense

Figure 10:Magnitude value of data 2.5 seconds sample points
of accelerometer (accl) and gyroscope (gyro), for six differ-
ent activities for a specific user.

Figure 11: Value of each axis versus magnitude value for
accelerometer (top) and gyroscope (bottom). Sample points
from 2.5 seconds of walking for a specific user (walking sec-
tion of Fig 10).

W a value that is a power of 2. As we discussed in section 4.2,

the bigger theW, the lower the possibility of taking advantage of

the correlation among the successive windows by adversaries. But

larger window sizes lead to more delay for real-time applications

and less data utility. Here, for all the experiments, we setW = 128

which equals to 2.56 seconds. We also set S = 10 as the step size of

the rolling-window.

For all the regularizers, EncReg, DecReg, and ActReg, we use 2D
convolutional neural networks. To prevent overfitting to training

data, we put a Dropout [30] layer after each convolution layer. We

also use L2 regularization to penalize weights with large magni-

tudes, and consequently this restriction forces classifier to learn

features that are more relevant to the prediction.

4.2 Sensor Data Characteristics
Here we discuss some characteristics of motion sensor data that are

important to be considered in design and evaluate of sensor data

anonymizer mechanisms.

7
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Figure 12: The effect of sharing different sensor data types in
recognizing activity and identity on the corresponding test
dataset. Mag means magnitude, Both means both gyro and
accl, 1D and 2D are the dimension of convolution filter, re-
spectively.

Differences. Time series of gyroscope and accelerometer sen-

sors give us insights into user’s current state. Figure 10 compares

the magnitude value of two sensors when the user is in six different

states. Discerning patterns among activities can be seen in the data,

however distinguishing motionless activities from each other, Sat

and Stand-Up, is quite hard. We observed that the only data that is

informative to distinguish motionless activities from each other is

the value of gravity axes which determines the phone is being held

in a vertical or horizontal direction. Users can only be distinguished

from each other by observing their motion activities. Therefore, we

do not consider motionless activities in our experiments.

Dimensions. Motion sensors measure the instant rotation and

acceleration of the device, in all the three dimensions. As shown

in Figure 11, there is a very informative correlation between the

magnitude of these two kind of independently collected measure-

ments. We see that both sensors almost follow each other, especially

for the peaks and periodicity of the magnitude value, whereas a

correlation among axes is less obvious.

Combinations. In Figure 12 we run an experiment to see: First,

the effect of only sharing the magnitude value of each sensor with

the app than sharing the exact value of each axis (x ,y, z). Second,
the effect of sharing the data of only one of these sensors than

sharing both. It is very important to know how much information

about user’s identity can be extracted form the correlation between

accelerometer and gyroscope. In Figure 12 we compare seven differ-

ent settings of data sharing by calculating the F1 score for a deep

convolutional neural network as the classifier
11
. For activity recog-

nition, we consider Subject setting, but for identity recognition we

use Trial setting.

One observation is, we can achieve equal and even better accu-

racy for activity recognition by only feeding the magnitude value

to the model than all three axes, but for identity recognition we

can take advantage of having exact values of each axis. Another ob-

servation is, when we use a 2D convolutional filters, which means

the classifier model consider correlation among the inputs, than 1D

filters that process each input time series separately, a better result

is achieved for both activity and identity. Hence, a good anonymiza-

tion mechanism should consider both inter-correlations, among

11
By the similar architecture described in Figure 5

Figure 13: Autocorrelation plot of the accelerometer data for
different activities averaged over all the users data. Correla-
tion values outside the confidence interval lines are statisti-
cally significant, that means the results are reliable and not
attributed to chance.

Figure 14: Autocorrelation of the accelerometer data for the
walking activity for three different users.

adjacent values generated by one sensor, and intra-correlations,

among coincident values generated bt both sensors. Based on this

analysis, we use theMagBoth_2D case (sharing magnitude value of

both gyro and accl) for all the experiments in the rest of the paper.

Correlations. Figure 13 shows the autocorrelation function

(ACF)
12

for the magnitude of accelerometer data for different ac-

tivities. We take the autocorrelation of 45 seconds of data for all

users and average over these to get the ACF for all users. We see

that motion data is a periodic time series, but each activity has a

different period. Walking shows the highest correlation and after

that we have jogging, upstairs, and downstairs, respectively. One

interesting point is about the distance between two peaks which

can be related to the stride intervals
13
. Another observation is that

there are strong correlations among the points inside a time win-

dow of two seconds of the data. As a result, a good anonymization

mechanism should consider a time window of at least 2 seconds to

be sure that it takes these correlations into account. However, the

correlations go under the confidence interval after about 5 seconds

and this is very helpful for real-time situations where we cannot

consider a big time window.

12
It plots the autocorrelation for data points at varying time lags.

13
Note that the sample rate of the dataset is 50Hz.
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Figure 15: The classification accuracy of a deep convolu-
tional neural network for both activity and identity recog-
nition on test data. (Top) when data is resampled to another
rate. (Bottom) when data is reconstructed by a subset of
components (from a total of 50 components), ordered from
largest to smallest by corresponding singular values.

What is more important for us is what we see in Figure 14 that

shows the autocorrelations of same activity for three different users.

The differences should be directly related to their characteristics. For

example, the heavier the user
14
, the bigger intervals between two

peaks. This user-identifiable pattern seems a challenging feature

of the sensory data to obscure before sharing. We can intuitively

say why baseline methods like downsampling the data cannot ef-

fectively hide the user’s identity, because these periodic patterns

can be approximately retrieved when we apply the upsampling by

a some effective filters.

4.3 Baseline Methods
Here we explain two baseline approach to coarse-grain time series

data: resampling and singular spectrum analysis. In the next section,

we compare the outputs of our proposed method with the outputs

of these methods.

Resampling. In time series analysis literature there are several

ways of resampling a series from its original sample rate to a target

sample rate [25]. Time series of mobile sensor data for activity

recognition all contain periodic components. Resampling by Fast

Fourier Transform (FFT) provides better results for periodic time

series. Therefore, we choose it as the resampling algorithm
15
. Here

the naive idea is reducing the richness of the data to the extent

14
Here the user u_1 is the heaviest among the three.

15
Specifically, we use “signal.resample” function of “SciPy” package.

that it contains useful information for recognizing the underlying

task while it no longer contains identity-centric patterns (e.g. high-

frequency components).

The top plot in Figure 15 presents the classification accuracy over

test dataset when we feed the classifier a downsampled version

of the original data. In this experiment we train a fix model for

all the sample rate values to have fair comparisons. Result shows

the impact of coarse-graining on activity recognition task can be

ignored for a sample rate bigger than 20Hz. But, surprisingly, even

by having a 5 samples per second (5Hz) dataset, we can distinguish

24 different users from each other by more than 60% accuracy.

Singular Spectrum Analysis. SSA [5] is a method for decom-

posing time series data into a collection of interpretable components

such as trend, periodic, and structureless (or noise) components.

SSA has a wide range of applications, because it is a model-free

technique and does not assume stationarity-type conditions. It is

based on the singular value decomposition (SVD) of the trajec-

tory matrix constructed upon the time series and only has a win-

dow length parameter that specifies the number of components. In

our case, we can decompose each X , into a set of D components,

{X1,X2, . . . ,Xd }, such that the original time series can be exactly

recovered by summing together all of the extracted components:

X =
D∑
i=1
Xi (14)

One interesting aspect of SSA is theXi ’s are arranged in descending
order according to their corresponding singular value. Thus, we

explore the idea of incremental reconstruction as a coarse-graining

method, in the bottom plot of Fig.15. It shows training a classifier

on the reconstruction with only the first components (of a total 10

extracted components) can achieve a more than 80% accuracy for

both activity and identity recognition. This results give us a hint

that each SSA component contain information about both activity

and identity.

4.4 Discussion
We compare the output of the CAE with baseline methods and

with Rep [9], which only consider the latent representation and

locates the regularizers to only monitor Y, and does not take X′

into account (Figure 2).

Classification Accuracy. We train the classifier on both the

original and the anonymized training dataset, and then use it for

inference on the test data. Here we use the Subject setting, thus

the test data includes data of new unseen users. Table 2 shows

that the average accuracy for activity recognition, for both Raw

and CAE data is around 92%. Comparing to other methods, that

decrease the utility of the data, we can preserve the utility and even

make it a bit better in average. One reason is, the CAE shapes data

such that an activity recognition classifier can learn better from the

transformed data than the raw data. We have seen in section 3.5

that CAE introduces new frequencies into the transformed data

and they are different for each activity.

To evaluate the degree of anonymity, we train a classifier in Trial

setting over raw data and then feed it different types of transformed

data. Table 2 shows that downsampling data from 50Hz to 5Hz

reveals more information than using the CAE output in the original

9



info. result type

raw

(50Hz)

resample

(10Hz)

resample

(5Hz)

SSA

(1,2)

SSA

(1)

REP [9]

(50Hz)

CAE

(50Hz)

(I) act

(subject)

mean F1 92.51 91.11 88.02 88.59 87.41 91.47 92.91

var F1 2.06 0.63 1.85 0.91 0.89 00.87 0.37

(I) id

(trial)

mean ACC 96.20 31.08 13.53 34.13 16.07 15.92 6.98

mean F1 95.90 25.57 8.86 28.59 12.58 11.25 1.76

(II) id

(DTW)

mean Rank 0 7 9 7 9 6 7

var Rank 0 6 6 6 5 6 5

Table 2: The trade-off between utility for activity recognition (act) and privacy of identity (id). ACC and F1 means accuracy
and F1 score of classification, respectively. The forth column shows the K-NN rank between 24 users.

frequency. This results show the CAE can effectively obscure user-

identifiable information, such that even a model that have had

access to users’ original data cannot distinguish them after applying

the transformation.

The k-Nearest Neighbors. To evaluate the efficiency of the

anonymization with another unsupervised mechanism, we imple-

ment the k-Nearest Neighbors (k-NN) with Dynamic TimeWarping

(DTW) [27], which is one of the best methods for clustering time

series data
16
. Using DTW, we measure the similarity between the

transformed data of a target user k and the raw data of each user l,
Xl
, for all l ∈ {1, 2, . . . , k, . . . ,N}, including k itself. Then we use

this similarity measure to find the nearest neighbors of user l and
check the rank of k among them. Table 2 shows it is very difficult

to find similarities between users’ transformed data and their raw

data as the performance of the CAE is almost the same as the basic

methods and we have a constraint in Eq. (2) to keep the data as

similar as possible to the original data.

5 CONCLUSION
We proposed a new multi-objective loss function to train convolu-

tional auto-encoders (CAE) as sensor data anonymizers that run

on personal devices. The proposed solution is important to en-

sure anonymization for participatory sensing [6], when individuals

contribute data recorded by their personal devices for health and

well-being data analysis. We also not only consider the feature

extractor part of the neural network model (encoder) to remove

user-identifiable features included in available training data, but

we also force the reconstructor part (decoder) to shape final output

independent of every user in the training set, so the final trained

model will be a generalize model which can be used by to a new un-

seen user. Finally, we share with apps a data of the same dimension

as the original data, thus our method can easily mediate existing

sensors and apps.

As future work, we aim to measure the cost of running such

local transformations on user devices; to conduct experiments on

other use cases (i.e. different tasks); and to derive statistical bounds

for the amount of the achived privacy.

16k -NN with DTW outperforms other methods in time series classification, except

when considerable computation and implementation cost is acceptable for very small

improvements [2].
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