14 research outputs found
\textsc{MaGe} - a {\sc Geant4}-based Monte Carlo Application Framework for Low-background Germanium Experiments
We describe a physics simulation software framework, MAGE, that is based on
the GEANT4 simulation toolkit. MAGE is used to simulate the response of
ultra-low radioactive background radiation detectors to ionizing radiation,
specifically the MAJORANA and GERDA neutrinoless double-beta decay experiments.
MAJORANA and GERDA use high-purity germanium detectors to search for the
neutrinoless double-beta decay of 76Ge, and MAGE is jointly developed between
these two collaborations. The MAGE framework contains the geometry models of
common objects, prototypes, test stands, and the actual experiments. It also
implements customized event generators, GEANT4 physics lists, and output
formats. All of these features are available as class libraries that are
typically compiled into a single executable. The user selects the particular
experimental setup implementation at run-time via macros. The combination of
all these common classes into one framework reduces duplication of efforts,
eases comparison between simulated data and experiment, and simplifies the
addition of new detectors to be simulated. This paper focuses on the software
framework, custom event generators, and physics lists.Comment: 12 pages, 6 figure
The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe
The preponderance of matter over antimatter in the early Universe, the
dynamics of the supernova bursts that produced the heavy elements necessary for
life and whether protons eventually decay --- these mysteries at the forefront
of particle physics and astrophysics are key to understanding the early
evolution of our Universe, its current state and its eventual fate. The
Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed
plan for a world-class experiment dedicated to addressing these questions. LBNE
is conceived around three central components: (1) a new, high-intensity
neutrino source generated from a megawatt-class proton accelerator at Fermi
National Accelerator Laboratory, (2) a near neutrino detector just downstream
of the source, and (3) a massive liquid argon time-projection chamber deployed
as a far detector deep underground at the Sanford Underground Research
Facility. This facility, located at the site of the former Homestake Mine in
Lead, South Dakota, is approximately 1,300 km from the neutrino source at
Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino
charge-parity symmetry violation and mass ordering effects. This ambitious yet
cost-effective design incorporates scalability and flexibility and can
accommodate a variety of upgrades and contributions. With its exceptional
combination of experimental configuration, technical capabilities, and
potential for transformative discoveries, LBNE promises to be a vital facility
for the field of particle physics worldwide, providing physicists from around
the globe with opportunities to collaborate in a twenty to thirty year program
of exciting science. In this document we provide a comprehensive overview of
LBNE's scientific objectives, its place in the landscape of neutrino physics
worldwide, the technologies it will incorporate and the capabilities it will
possess.Comment: Major update of previous version. This is the reference document for
LBNE science program and current status. Chapters 1, 3, and 9 provide a
comprehensive overview of LBNE's scientific objectives, its place in the
landscape of neutrino physics worldwide, the technologies it will incorporate
and the capabilities it will possess. 288 pages, 116 figure
MaGe-a Geant4-Based Monte Carlo Application Framework for Low-Background Germanium Experiments
We describe a physics simulation software framework, MAGE, that is based on the GEANT4 simulation toolkit. MAGE is used to simulate the response of ultra-low radioactive background radiation detectors to ionizing radiation, specifically the MAJORANA and GERDA neutrinoless double-beta decay experiments. MAJORANA and GERDA use high-purity germanium detectors to search for the neutrinoless double-beta decay of 76Ge, and MAGE is jointly developed between these two collaborations. The MAGE framework contains the geometry models of common objects, prototypes, test stands, and the actual experiments. It also implements customized event generators, GEANT4 physics lists, and output formats. All of these features are available as class libraries that are typically compiled into a single executable. The user selects the particular experimental setup implementation at run-time via macros. The combination of all these common classes into one framework reduces duplication of efforts, eases comparison between simulated data and experiment, and simplifies the addition of new detectors to be simulated. This paper focuses on the software framework, custom event generators, and physics lists
Recommended from our members
Measurements of the intrinsic quantum efficiency and absorption length of tetraphenyl butadiene thin films in the vacuum ultraviolet regime
Measurements of the intrinsic quantum efficiency and absorption length of tetraphenyl butadiene thin films in the vacuum ultraviolet regime
Abstract A key enabling technology for many liquid noble gas (LNG) detectors is the use of the common wavelength shifting medium tetraphenyl butadiene (TPB). TPB thin films are used to shift ultraviolet scintillation light into the visible spectrum for detection and event reconstruction. Understanding the wavelength shifting efficiency and optical properties of these films are critical aspects in detector performance and modeling and hence in the ultimate physics sensitivity of such experiments. This article presents the first measurements of the room-temperature microphysical quantum efficiency for vacuum-deposited TPB thin films – a result that is independent of the optics of the TPB or substrate. Also presented are measurements of the absorption length in the vacuum ultraviolet regime, the secondary re-emission efficiency, and more precise results for the “black-box” efficiency across a broader spectrum of wavelengths than previous results. The low-wavelength sensitivity, in particular, would allow construction of LNG scintillator detectors with lighter elements (Ne, He) to target light mass WIMPs