11 research outputs found

    TOPICAL AND SYSTEMIC DERMAL CARRIERS FOR PSORIASIS

    Get PDF
    Psoriasis is a non-infectious, dry, inflammatory (autoimmune) skin disorder. Treatment approaches include phototherapy, topical, oral and other systemic drug delivery. However, owing to the side effects and incomplete cure accompanying the oral administration as well as phototherapy, the topical route seemed to be more satisfactory for the medical team. Dermal treatment ensuring percutaneous penetration is now highly recommended in topical indications for psoriatic patients, which can be achieved using pharmaceutical carriers. Several carrier systems loaded with antipsoriatic drugs have demonstrated promising results, with some of them strictly being confined to the skin and others allowing for systemic involvement also. The evolution in this area will present a more useful and safer therapy by minimizing the drugs' degradation and loss, and increasing their bioavailability and effectiveness. Since patients require at least three topical applications for almost a 1-year period to gain health benefit, a reduction in the cost of the treatment will be of real value. A distinction of these carriers is made in the current review, to allow the choice of the most suitable pharmaceutical carrier for psoriatic patients requiring either local and/or systemic involvement

    An integrated vitamin E-coated polymer hybrid nanoplatform: A lucrative option for an enhanced in vitro macrophage retention for an anti-hepatitis B therapeutic prospect.

    No full text
    A platform capable of specifically delivering an antiviral drug to the liver infected with hepatitis B is a major concern in hepatology. Vaccination has had a major effect on decreasing the emerging numbers of new cases of infection. However, the total elimination of the hepatitis B virus from the body requires prolonged therapy. In this work, we aimed to target the liver macrophages with lipid polymer hybrid nanoparticles (LPH), combining the merit of polymeric nanoparticles and lipid vesicles. The hydrophilic antiviral drug, entecavir (E), loaded LPH nanoparticles were optimized and physicochemically characterized. A modulated lipidic corona, as well as, an additional coat with vitamin E were used to extend the drug release enhance the macrophage uptake. The selected vitamin E coated LPH nanoparticles enriched with lecithin-glyceryl monostearate lipid shell exhibited high entrapment for E (80.47%), a size ≀ 200 nm for liver passive targeting, extended release over one week, proven serum stability, retained stability after refrigeration storage for 6 months. Upon macrophage uptake in vitro assessment, the presented formulation displayed promising traits, enhancing the cellular retention in J774 macrophages cells. In vivo and antiviral activity futuristic studies would help in the potential application of the ELPH in hepatitis B control

    Passive targeting and lung tolerability of enoxaparin microspheres for a sustained antithrombotic activity in rats

    No full text
    <p>Pulmonary bed can retain microparticles (MP) larger than their capillaries’ diameter, hence we offer a promising way for lung passive targeting following intravenous (IV) administration. In this study, enoxaparin (Enox)-albumin microspheres (Enox-Alb MS) were, optimally, developed as lung targeted sustained release MP for IV use. Lung tolerability and targeting efficiency of Enox-Alb MS were tested, and the pharmacokinetic profile following IV administration to albino rats was constructed. <i>In vivo</i> studies confirmed high lung targeting efficiency of Enox-Alb MS with lack of potential tissue toxicity. The anticoagulant activity of the selected Alb MS was significantly sustained for up to 38 h compared to 5 h for the market product. Alb MS are promising delivery carriers for controlled and targeted delivery of Enox to the lungs for prophylaxis and treatment of pulmonary embolism.</p

    A Tailored Thermosensitive PLGA-PEG-PLGA/Emulsomes Composite for Enhanced Oxcarbazepine Brain Delivery via the Nasal Route

    No full text
    The use of nanocarrier delivery systems for direct nose to brain drug delivery shows promise for achieving increased brain drug levels as compared to simple solution systems. An example of such nanocarriers is emulsomes formed from lipid cores surrounded and stabilised by a corona of phospholipids (PC) and a coating of Tween 80, which combines the properties of both liposomes and emulsions. Oxcarbazepine (OX), an antiepileptic drug, was entrapped in emulsomes and then localized in a poly(lactic acid-co-glycolic acid)-poly(ethylene glycol)-poly(lactic acid-co-glycolic acid) (PLGA-PEG-PLGA) triblock copolymer thermogel. The incorporation of OX emulsomes in thermogels retarded drug release and increased its residence time (MRT) in rats. The OX-emulsome and the OX-emulsome-thermogel formulations showed in vitro sustained drug release of 81.1 and 53.5%, respectively, over a period of 24 h. The pharmacokinetic studies in rats showed transport of OX to the systemic circulation after nasal administration with a higher uptake in the brain tissue in case of OX-emulsomes and highest MRT for OX-emulsomal-thermogels as compared to the IN OX-emulsomes, OX-solution and TrileptalÂź suspension. Histopathological examination of nasal tissues showed a mild vascular congestion and moderate inflammatory changes around congested vessels compared to saline control, but lower toxic effect than that reported in case of the drug solution

    Polyethylene Glycol Conjugated Polymeric Nanocapsules for Targeted Delivery of Quercetin to Folate-Expressing Cancer Cells In Vitro and In Vivo

    No full text
    In this work we describe the formulation and characterization of chemically modified polymeric nanocapsules incorporating the anticancer drug, quercetin, for the passive and active targeting to tumors. Folic acid was conjugated to poly (lactide-co-glycolide) (PLGA) polymer to facilitate active targeting to cancer cells. Two different methods for the conjugation of PLGA to folic acid were employed utilising polyethylene glycol (PEG) as a spacer. Characterisation of the conjugates was performed using FTIR and 1H-NMR studies. The PEG and Folic acid content was independent on the conjugation methodology employed. PEGylation has shown to reduce the size of the nanocapsule, moreover, Zeta potential was shown to be polymer-type dependent. Comparative studies on the cytotoxicity and cellular uptake of the different formulations by HeLa cells, in the presence and absence of excess folic acid, were carried out using MTT assay and Confocal Laser Scanning Microscopy, respectively. Both results confirmed the selective uptake and cytotoxicity of the folic acid targeted nanocapsules to the folate enriched cancer cells in a folate-dependent manner. Finally the passive tumor accumulation and the active targeting of the nanocapsules to folate-expressing cells were confirmed upon intravenous administration in HeLa or IGROV-1 tumor-bearing mice. The developed nanocapsules provide a system for targeted delivery of a range of hydrophobic anti-cancer drugs in vivo

    Release Mechanisms Behind Polysaccharides-Based Famotidine Controlled Release Matrix Tablets

    No full text
    Polysaccharides, which have been explored to possess gelling properties and a wide margin of safety, were used to formulate single-unit floating matrix tablets by a direct compression technique. This work has the aim to allow continuous slow release of famotidine above its site of absorption. The floating approach was achieved by the use of the low density polypropylene foam powder. Polysaccharides (Îș-carrageenan, gellan gum, xyloglucan, and pectin) and blends of polysaccharides (Îș-carrageenan and gellan gum) and cellulose ethers (hydroxypropylmethyl cellulose, hydroxypropylcellulose, sodium carboxymethyl cellulose) were tried to modulate the release characteristics. The prepared floating tablets were evaluated for their floating behavior, matrix integrity, swelling studies, in vitro drug release studies, and kinetic analysis of the release data. The differential scanning calorimetry and Fourier transform infrared spectroscopy studies revealed that changing the polymer matrix system by formulation of polymers blends resulted in formation of molecular interactions which may have implications on drug release characteristics. This was obvious from the retardation in drug release and change in its mechanistics

    Polyethylene Glycol Conjugated Polymeric Nanocapsules for Targeted Delivery of Quercetin to Folate-Expressing Cancer Cells <i>in Vitro</i> and <i>in Vivo</i>

    No full text
    In this work we describe the formulation and characterization of chemically modified polymeric nanocapsules incorporating the anticancer drug, quercetin, for the passive and active targeting to tumors. Folic acid was conjugated to poly(lactide-<i>co</i>-glycolide) (PLGA) polymer to facilitate active targeting to cancer cells. Two different methods for the conjugation of PLGA to folic acid were employed utilizing polyethylene glycol (PEG) as a spacer. Characterization of the conjugates was performed using FTIR and <sup>1</sup>H NMR studies. The PEG and folic acid content was independent of the conjugation methodology employed. PEGylation has shown to reduce the size of the nanocapsule; moreover, zeta-potential was shown to be polymer-type dependent. Comparative studies on the cytotoxicity and cellular uptake of the different formulations by HeLa cells, in the presence and absence of excess folic acid, were carried out using MTT assay and Confocal Laser Scanning Microscopy, respectively. Both results confirmed the selective uptake and cytotoxicity of the folic acid targeted nanocapsules to the folate enriched cancer cells in a folate-dependent manner. Finally, the passive tumor accumulation and the active targeting of the nanocapsules to folate-expressing cells were confirmed upon intravenous administration in HeLa or IGROV-1 tumor-bearing mice. The developed nanocapsules provide a system for targeted delivery of a range of hydrophobic anticancer drugs <i>in vivo</i>

    Polyethylene Glycol Conjugated Polymeric Nanocapsules for Targeted Delivery of Quercetin to Folate-Expressing Cancer Cells <i>in Vitro</i> and <i>in Vivo</i>

    No full text
    In this work we describe the formulation and characterization of chemically modified polymeric nanocapsules incorporating the anticancer drug, quercetin, for the passive and active targeting to tumors. Folic acid was conjugated to poly(lactide-<i>co</i>-glycolide) (PLGA) polymer to facilitate active targeting to cancer cells. Two different methods for the conjugation of PLGA to folic acid were employed utilizing polyethylene glycol (PEG) as a spacer. Characterization of the conjugates was performed using FTIR and <sup>1</sup>H NMR studies. The PEG and folic acid content was independent of the conjugation methodology employed. PEGylation has shown to reduce the size of the nanocapsule; moreover, zeta-potential was shown to be polymer-type dependent. Comparative studies on the cytotoxicity and cellular uptake of the different formulations by HeLa cells, in the presence and absence of excess folic acid, were carried out using MTT assay and Confocal Laser Scanning Microscopy, respectively. Both results confirmed the selective uptake and cytotoxicity of the folic acid targeted nanocapsules to the folate enriched cancer cells in a folate-dependent manner. Finally, the passive tumor accumulation and the active targeting of the nanocapsules to folate-expressing cells were confirmed upon intravenous administration in HeLa or IGROV-1 tumor-bearing mice. The developed nanocapsules provide a system for targeted delivery of a range of hydrophobic anticancer drugs <i>in vivo</i>
    corecore