10 research outputs found

    Analysis of VEGF-responsive Genes Involved in the activation of endothelial cells

    Get PDF
    BACKGROUND: Identification of the genes and pathways associated with the activation of endothelial cells (ECs) could help uncover the role of ECs in wound healing, vascular permeability, blood brain barrier function, angiogenesis, diabetic retinopathy, atherosclerosis, psoriasis, and growth of solid tumors. DESIGN: Herein, we embedded ECs in 3D type I collagen gel, left unstimulated or stimulated with VEGF(165), and subjected to suppression subtractive hybridization followed by differential display (SSHDD). Gene fragments obtained from SSHDD were subjected to DNA sequence analysis. Database search with nucleotide sequence were performed using the BLAST algorithm and expression of candidate genes determined by northern blot analysis. RESULTS: A total of ~32 cDNA fragments, including known regulators of angiogenesis, and a set of genes that were not reported to be associated with activation of ECs and angiogenesis previously were identified. We confirmed the mRNA expression of KDR, α(2 )integrin, Stanniocalcin, including a set of 11 candidate genes. Western immunoblotting results indicated that KDR, α(2 )integrin, MMP-1, MMP-2, and VE-cadherin genes were indeed active genes. CONCLUSION: We have identified a set of 11 VEGF-responsive endothelial cell candidate genes. Their expression in endothelial cell is confirmed by northern blot analyses. This preliminary report forms as a foundation for functional studies to be performed to reveal their roles in EC activation and pathophysiological events associated with the vasculature including tumor growth

    Increased myocardial susceptibility to repetitive ischemia with high-fat diet-induced obesity.

    Get PDF
    Obesity and diabetes are frequently associated with cardiovascular disease. When a normal heart is subjected to brief/sublethal repetitive ischemia and reperfusion (I/R), adaptive responses are activated to preserve cardiac structure and function. These responses include but are not limited to alterations in cardiac metabolism, reduced calcium responsiveness, and induction of antioxidant enzymes. In a model of ischemic cardiomyopathy inducible by brief repetitive I/R, we hypothesized that dysregulation of these adaptive responses in diet-induced obese (DIO) mice would contribute to enhanced myocardial injury. DIO C57BL/6J mice were subjected to 15 min of daily repetitive I/R while under short-acting anesthesia, a protocol that results in the development of fibrotic cardiomyopathy. Cardiac lipids and candidate gene expression were analyzed at 3 days, and histology at 5 days of repetitive I/R. Total free fatty acids (FFAs) in the cardiac extracts of DIO mice were significantly elevated, reflecting primarily the dietary fatty acid (FA) composition. Compared with lean controls, cardiac FA oxidation (FAO) capacity of DIO mice was significantly higher, concurrent with increased expression of FA metabolism gene transcripts. Following 15 min of daily repetitive I/R for 3 or 5 days, DIO mice exhibited increased susceptibility to I/R and, in contrast to lean mice, developed microinfarction, which was associated with an exaggerated inflammatory response. Repetitive I/R in DIO mice was associated with more profound significant downregulation of FA metabolism gene transcripts and elevated FFAs and triglycerides. Maladaptive metabolic changes of FA metabolism contribute to enhanced myocardial injury in diet-induced obesity

    Potential Use of a White-Rot Fungus Antrodiella Sp. Rk1 for Biopulping

    No full text

    Functional characterization of calcium sensing receptor polymorphisms and absence of association with indices of calcium homeostasis and bone mineral density

    No full text
    OBJECTIVES: Associations between calcium-sensing receptor (CaSR) polymorphisms and serum calcium, PTH and bone mineral density (BMD) have been reported by six studies. However, three other studies have failed to detect such associations. We therefore further investigated three CaSR coding region polymorphisms (Ala986Ser, Arg990Gly and Gln1011Glu) for associations with indices of calcium homeostasis and BMD and for alterations in receptor function. PATIENTS AND DESIGN: One hundred and ten adult, Caucasian, female, dizygotic twin pairs were investigated for associations between the three CaSR polymorphisms and serum calcium, albumin, PTH, 25-hydroxyvitamin D(3) (25OHD(3)), 1,25-dihydroxyvitamin D(3)[1,25(OH)(2)D(3)], urinary calcium excretion and BMD. Each polymorphic CaSR was also transfected into HEK293 cells and functionally evaluated. RESULTS: There was a lack of association between each of these three CaSR polymorphisms and serum calcium corrected for albumin, PTH, 25OHD(3), 1,25(OH)(2)D(3), urinary calcium excretion or BMD at the hip, forearm and lumbar spine. These findings were supported by a lack of functional differences in the dose-response curves of the CaSR variants, with the EC(50) values (mean +/- SEM) of the wild-type (Ala986/Arg990/Gln1011), Ser986, Gly990 and Glu1011 CaSR variants being 2.74 +/- 0.29 mm, 3.09 +/- 0.34 mm (P > 0.4), 2.99 +/- 0.23 mm (P > 0.4) and 2.96 +/- 0.30 mm (P > 0.5), respectively. CONCLUSIONS: Our study, which was sufficiently powered to detect effects that would explain up to 5%, but not less than 1%, of the variance has revealed that the three CaSR polymorphisms of the coding region have no major influence on indices of calcium homeostasis in this female population, and that they do not alter receptor function
    corecore