255 research outputs found

    The SONYC survey: Towards a complete census of brown dwarfs in star forming regions

    Full text link
    SONYC, short for "Substellar Objects in Nearby Young Clusters", is a survey program to provide a census of the substellar population in nearby star forming regions. We have conducted deep optical and near-infrared photometry in five young regions (NGC1333, rho Ophiuchi, Chamaeleon-I, Upper Sco, and Lupus-3), combined with proper motions, and followed by extensive spectroscopic campaigns with Subaru and VLT, in which we have obtained more than 700 spectra of candidate low-mass objects. We have identified and characterized more than 60 new substellar objects, among them a handful of objects with masses close to, or below the Deuterium burning limit. Through SONYC and surveys by other groups, the substellar IMF is now well characterized down to ~ 5 - 10 MJup, and we find that the ratio of the number of stars with respect to brown dwarfs lies between 2 and 6. A comprehensive survey of NGC 1333 reveals that, down to ~5MJup, free-floating objects with planetary masses are 20-50 times less numerous than stars, i.e. their total contribution to the mass budget of the clusters can be neglected.Comment: to appear in the proceedings of the conference 'Brown dwarfs come of age', May 20-24 2013, Memorie della Societa Astronomica Italian

    Lack of PAH emission toward low-mass embedded young stellar objects

    Get PDF
    PAHs have been detected toward molecular clouds and some young stars with disks, but have not yet been associated with embedded young stars. We present a sensitive mid-IR spectroscopic survey of PAH features toward a sample of low-mass embedded YSOs. The aim is to put constraints on the PAH abundance in the embedded phase of star formation using radiative transfer modeling. VLT-ISAAC L-band spectra for 39 sources and Spitzer IRS spectra for 53 sources are presented. Line intensities are compared to recent surveys of Herbig Ae/Be and T Tauri stars. The radiative transfer codes RADMC and RADICAL are used to model the PAH emission from embedded YSOs consisting of a PMS star with a circumstellar disk embedded in an envelope. The dependence of the PAH feature on PAH abundance, stellar radiation field, inclination and the extinction by the surrounding envelope is studied. The 3.3 micron PAH feature is undetected for the majority of the sample (97%), with typical upper limits of 5E-16 W/m^2. Compact 11.2 micron PAH emission is seen directly towards 1 out of the 53 Spitzer Short-High spectra, for a source that is borderline embedded. For all 12 sources with both VLT and Spitzer spectra, no PAH features are detected in either. In total, PAH features are detected toward at most 1 out of 63 (candidate) embedded protostars (<~ 2%), even lower than observed for class II T Tauri stars with disks (11-14%). Assuming typical class I stellar and envelope parameters, the absence of PAHs emission is most likely explained by the absence of emitting carriers through a PAH abundance at least an order of magnitude lower than in molecular clouds but similar to that found in disks. Thus, most PAHs likely enter the protoplanetary disks frozen out in icy layers on dust grains and/or in coagulated form.Comment: 13 pages, 9 figures, accepted for publication in A&

    Probing protoplanetary disks with silicate emission: Where is the silicate emission zone?

    Get PDF
    Recent results indicate that the grain size and crystallinity inferred from observations of silicate features may be correlated with the spectral type of the central star and/or disk geometry. In this paper, we show that grain size, as probed by the 10 ΞΌm silicate feature peak-to-continuum and 11.3 to 9.8 ΞΌm flux ratios, is inversely proportional to log Lsstarf. These trends can be understood using a simple two-layer disk model for passive irradiated flaring disks, CGPLUS. We find that the radius, R10, of the 10 ΞΌm silicate emission zone in the disk goes as (L*/Lβ˜‰)^0.56, with slight variations depending on disk geometry (flaring angle and inner disk radius). The observed correlations, combined with simulated emission spectra of olivine and pyroxene mixtures, imply a dependence of grain size on luminosity. Combined with the fact that R10 is smaller for less luminous stars, this implies that the apparent grain size of the emitting dust is larger for low-luminosity sources. In contrast, our models suggest that the crystallinity is only marginally affected, because for increasing luminosity, the zone for thermal annealing (assumed to be at T > 800 K) is enlarged by roughly the same factor as the silicate emission zone. The observed crystallinity is affected by disk geometry, however, with increased crystallinity in flat disks. The apparent crystallinity may also increase with grain growth due to a corresponding increase in contrast between crystalline and amorphous silicate emission bands

    Dust sedimentation in protoplanetary disks with polycyclic aromatic hydrocarbons

    Get PDF
    Context. Dust sedimentation is known to affect the infrared spectra and images of disks. In particular the far-infrared emission may be reduced by strong sedimentation. However, dust grains of different sizes sediment to different depths in the disk. Spectral features of one species may thus be enhanced, while those of other species may be suppressed. Aims. Polycyclic aromatic hydrocarbons (PAHs) are among the smallest β€œdust grains”. We investigate how the presence of PAHs in protoplanetary disks affects the disk’s spectral energy distribution (SED) and feature strengths when the thermal (large) grains are allowed to sediment. Methods. We calculate the vertical distribution of dust grains for both the PAH β€œdust” and the thermal dust grains.We include vertical settling and vertical mixing via turbulence. The results are inserted into a Monte-Carlo radiative transfer code to compute the SEDs. Results. For high turbulence the sedimentation barely affects the spectrum. For low turbulence, however, the PAHs still stay well-mixed in the disk’s surface layer, while the 0.1 ΞΌm size grains sediment deep into the disk. This strongly enhances the PAH features relative to the continuum (by factors of 2 to 10), while the far-infrared flux is reduced. This predicts that sources with weak far-infrared flux have stronger PAH features, which is – at least among Herbig Ae stars – opposite to what is observed, suggesting that sedimentation is not the only factor responsible for the weak mid- to far-infrared excess in some disks. We speculate that coagulation might be a solution, reducing both the mid- to far-infrared flux and the PAH features

    C2D Spitzer-IRS spectra of disks around T Tauri stars: IV. Crystalline silicates

    Get PDF
    Aims. Dust grains in the planet-forming regions around young stars are expected to be heavily processed due to coagulation, fragmentation, and crystallization. This paper focuses on the crystalline silicate dust grains in protoplanetary disks for a statistically significant number of TTauri stars (96). Methods. As part of the cores to disks (c2d) legacy program, we obtained more than a hundred Spitzer/IRS spectra of TTauri stars, over a spectral range of 5-35 ΞΌm where many silicate amorphous and crystalline solid-state features are present. At these wavelengths, observations probe the upper layers of accretion disks up to distances of a dozen AU from the central object. Results. More than 3/4 of our objects show at least one crystalline silicate emission feature that can be essentially attributed to Mg-rich silicates. The Fe-rich crystalline silicates are largely absent in the c2d IRS spectra. The strength and detection frequency of the crystalline features seen at Ξ» > 20 ΞΌm correlate with each other, while they are largely uncorrelated with the observational properties of the amorphous silicate 10 ΞΌm feature. This supports the idea that the IRS spectra essentially probe two independent disk regions: a warm zone (≀1 AU) emitting at ~ 10 ΞΌm and a much colder region emitting at Ξ» > 20 ΞΌm (≀10 AU). We identify a crystallinity paradox, as the long-wavelength (Ξ» > 20 m) crystalline silicate features are detected 3.5 times more frequently (~55% vs. ~15%) than the crystalline features arising from much warmer disk regions (Ξ» ~ 10 ΞΌm). This suggests that the disk has an inhomogeneous dust composition within ~10 AU. The analysis of the shape and strength of both the amorphous 10 ΞΌm feature and the crystalline feature around 23 ΞΌm provides evidence for the prevalence of ΞΌm-sized (amorphous and crystalline) grains in upper layers of disks. Conclusions. The abundant crystalline silicates found far from their presumed formation regions suggest efficient outward radial transport mechanisms in the disks around TTauri stars. The presence of ΞΌm-sized grains in disk atmospheres, despite the short timescales for settling to the midplane, suggests efficient (turbulent) vertical diffusion, probably accompanied by grain-grain fragmentation to balance the expected efficient growth. In this scenario, the depletion of submicron-sized grains in the upper layers of the disks points toward removal mechanisms such as stellar winds or radiation pressure

    Modeling Spitzer observations of VV Ser. II. an extended quantum heated nebula and a disk shadow

    Get PDF
    We present mid-infrared Spitzer IRAC and MIPS images of the UX Orionis star VV Ser and the surrounding cloud. The 5.6--70 micron images show bright, localized and nebulous emission extended over 4 arcmin centered on VV Ser. We interpret the nebulosity as being due to transiently heated grains excited by UV photons emitted by VV Ser. A companion paper describes how the physical structure of the VV Ser disk has been constrained using a wide range of observational data modeled by an axisymmetric Monte Carlo radiative transfer code. In this paper we employ the model to study the nebulosity surrounding VV Ser using quantum-heated PAH molecules and Very Small Grains (VSGs) consisting of amorphous carbon in the thermal cooling approximation. Imprinted on the nebulosity is a wedge-shaped dark band, centered on the star. We interpret this dark wedge as the shadow cast by the inner regions of a near-edge-on disk in UV light, allowing the PAHs to be excited only outside of this shadow. The presence of a disk shadow strongly constrains the inclination as well as the position angle of the disk. Although depending on the adopted PAH opacity, the abundance of PAHs in the surrounding cloud is constrained to 5+/-2% of the total dust mass, given the opacity. The extent of the nebulosity constrains the density of the gas surrounding the VV Ser disk to 500+/-200 cm-3 for a gas-to-dust ratio of 100. This low density suggests that the quantum heated material is not part of the original envelope of VV Ser and that it is rather a quiescent part of the Serpens molecular cloud that the star has passed into after being formed. [Abstract abridged

    Spatially extended PAHs in circumstellar disks around T Tauri and Herbig Ae stars

    Get PDF
    Our aim is to determine the presence and location of the emission from polycyclic aromatic hydrocarbons (PAHs) towards low and intermediate mass young stars with disks using large aperture telescopes. VLT-VISIR N-band spectra and VLT-ISAAC and VLT-NACO L-band spectra of 29 sources are presented, spectrally resolving the 3.3, 8.6, 11.2, and 12.6 micron PAH features. Spatial-extent profiles of the features and the continuum emission are derived and used to associate the PAH emission with the disks. The results are discussed in the context of recent PAH-emission disk models. The 3.3, 8.6, and 11.2 micron PAH features are detected toward a small fraction of the T Tauri stars, with typical upper limits between 1E-15 and 5E-17 W/m^2. All 11.2 micron detections from a previous Spitzer survey are confirmed with (tentative) 3.3 micron detections, and both the 8.6 and the 11.2 micron features are detected in all PAH sources. For 6 detections, the spatial extent of the PAH features is confined to scales typically smaller than 0.12-0.34'', consistent with the radii of 12-60 AU disks at their distances (typically 150 pc). For 3 additional sources, WL 16, HD 100546, and TY CrA, one or more of the PAH features are more extended than the hot dust continuum of the disk, whereas for Oph IRS 48, the size of the resolved PAH emission is confirmed as smaller than for the large grains. For HD 100546, the 3.3 micron emission is confined to a small radial extent of 12 +- 3 AU, most likely associated with the outer rim of the gap in this disk. Gaps with radii out to 10-30 AU may also affect the observed PAH extent for other sources. For both Herbig Ae and T Tauri stars, the small measured extents of the 8.6 and 11.2 micron features are consistent with larger (>= 100 carbon atoms) PAHs.Comment: 14 pages, 17 figures, accepted for publication in A&

    Cold Disks: Spitzer Spectroscopy of Disks around Young Stars with Large Gaps

    Get PDF
    We have identified four circumstellar disks with a deficit of dust emission from their inner 15-50 AU. All four stars have F-G spectral type, and were uncovered as part of the Spitzer Space Telescope ``Cores to Disks'' Legacy Program Infrared Spectrograph (IRS) first look survey of ~100 pre-main sequence stars. Modeling of the spectral energy distributions indicates a reduction in dust density by factors of 100-1000 from disk radii between ~0.4 and 15-50 AU, but with massive gas-rich disks at larger radii. This large contrast between the inner and outer disk has led us to use the term `cold disks' to distinguish these unusual systems. However, hot dust [0.02-0.2 Mmoon] is still present close to the central star (R ~0.8 AU). We introduce the 30/13 micron, flux density ratio as a new diagnostic for identifying cold disks. The mechanisms for dust clearing over such large gaps are discussed. Though rare, cold disks are likely in transition from an optically thick to an optically thin state, and so offer excellent laboratories for the study of planet formation.Comment: 13 pages, 3 figures, accepted to ApJ
    • …
    corecore