31 research outputs found

    Fully embedded optical and electrical interconnections in flexible foils

    Get PDF
    This paper presents the development of a technology platform for the full integration of opto-electronic and electronic components, as well as optical interconnections in a flexible foil. A technology is developed to embed ultra thin (20 μ m) VCSEL's and Photodiodes in layers of optical transparent material. These layers are sandwiched in between two Polyimide layers to get a flexible foil with a final stack thickness of 150 μ m. Optical waveguides are structured by photolithography in the optical layers and pluggable mirror components couple the light from the embedded opto-electronics in and out of the waveguides. Besides optical links and optoelectronic components, electrical circuitry is also embedded by means of embedded copper tracks and thinned down Integrated Circuits (20 μ m). Optical connection towards the outer world is realized by U-groove passive alignment coupling of optical fibers with the embedded waveguides

    Development and characterization of composites consisting of woven fabrics with integrated prismatic shaped cavities

    Get PDF
    Composites are extensively used in automotive, construction, airplanes, wind turbines etc. because of their good mechanical properties such as high specific stiffness, high specific strength and resistance against fatigue. The main issues with composites are delamination and the manual labour in the production process. If hollow structures like stiffeners need to be manufactured, these problems become even more apparent. As a result, there is a lot of interest in woven fabrics with integrated prismatic shaped cavities for composites as they reduce the manual labour, have a higher resistance against delamination and can lead to special properties and applications. In this work several of these woven fabrics with integrated prismatic shaped cavities are designed and produced in high-tenacity polyester yarns. Then, the possibility to use these fabrics in composites is explored: reproducibility of the production process is assessed and static testing is performed. A reproducible production process is developed and static testing shows promising results

    Mutation of the inducible ARABIDOPSIS THALIANA CYTOCHROME P450 REDUCTASE2 alters lignin composition and improves saccharification

    Get PDF
    ARABIDOPSIS THALIANA CYTOCHROME P450 REDUCTASE1 (ATR1) and ATR2 provide electrons from NADPH to a large number of CYTOCHROME P450 (CYP450) enzymes in Arabidopsis (Arabidopsis thaliana). Whereas ATR1 is constitutively expressed, the expression of ATR2 appears to be induced during lignin biosynthesis and upon stresses. Therefore, ATR2 was hypothesized to be preferentially involved in providing electrons to the three CYP450s involved in lignin biosynthesis: CINNAMATE 4-HYDROXYLASE (C4H), p-COUMARATE 3-HYDROXYLASE1 (C3H1), and FERULATE 5-HYDROXYLASE1 (F5H1). Here, we show that the atr2 mutation resulted in a 6% reduction in total lignin amount in the main inflorescence stem and a compositional shift of the remaining lignin to a 10-fold higher fraction of p-hydroxyphenyl units at the expense of syringyl units. Phenolic profiling revealed shifts in lignin-related phenolic metabolites, in particular with the substrates of C4H, C3H1 and F5H1 accumulating in atr2 mutants. Glucosinolate and flavonol glycoside biosynthesis, both of which also rely on CYP450 activities, appeared less affected. The cellulose in the atr2 inflorescence stems was more susceptible to enzymatic hydrolysis after alkaline pretreatment, making ATR2 a potential target for engineering plant cell walls for biofuel production

    The RING E3 ligase KEEP ON GOING modulates JASMONATE ZIM-DOMAIN12 stability

    Get PDF
    Jasmonate (JA) signaling in plants is mediated by the JASMONATE ZIM-DOMAIN (JAZ) proteins that repress the activity of several transcription factors regulating JA-inducible gene expression. The hormone JA-isoleucine triggers the interaction of JAZ repressor proteins with the F-box protein CORONATINE INSENSITIVE1 (COI1), part of an S-phase kinase-associated protein1/Cullin1/F-box protein COI1 (SCFCOI1) E3 ubiquitin ligase complex, and their degradation by the 26S proteasome. In Arabidopsis (Arabidopsis thaliana), the JAZ family consists of 13 members. The level of redundancy or specificity among these members is currently not well understood. Here, we characterized JAZ12, encoded by a highly expressed JAZ gene. JAZ12 interacted with the transcription factors MYC2, MYC3, and MYC4 in vivo and repressed MYC2 activity. Using tandem affinity purification, we found JAZ12 to interact with SCFCOI1 components, matching with observed in vivo ubiquitination and with rapid degradation after treatment with JA. In contrast to the other JAZ proteins, JAZ12 also interacted directly with the E3 RING ligase KEEP ON GOING (KEG), a known repressor of the ABSCISIC ACID INSENSITIVE5 transcription factor in abscisic acid signaling. To study the functional role of this interaction, we circumvented the lethality of keg loss-of-function mutants by silencing KEG using an artificial microRNA approach. Abscisic acid treatment promoted JAZ12 degradation, and KEG knockdown led to a decrease in JAZ12 protein levels. Correspondingly, KEG overexpression was capable of partially inhibiting COI1-mediated JAZ12 degradation. Our results provide additional evidence for KEG as an important factor in plant hormone signaling and a positive regulator of JAZ12 stability
    corecore