32 research outputs found

    RPL5 on 1p22.1 is recurrently deleted in multiple myeloma and its expression is linked to bortezomib response

    Get PDF
    Chromosomal region 1p22 is deleted in 6520% of multiple myeloma (MM) patients, suggesting the presence of an unidentified tumor suppressor. Using high-resolution genomic profiling, we delimit a 58 kb minimal deleted region (MDR) on 1p22.1 encompassing two genes: ectopic viral integration site 5 (EVI5) and ribosomal protein L5 (RPL5). Low mRNA expression of EVI5 and RPL5 was associated with worse survival in diagnostic cases. Patients with 1p22 deletion had lower mRNA expression of EVI5 and RPL5, however, 1p22 deletion status is a bad predictor of RPL5 expression in some cases, suggesting that other mechanisms downregulate RPL5 expression. Interestingly, RPL5 but not EVI5 mRNA levels were significantly lower in relapsed patients responding to bortezomib and; both in newly diagnosed and relapsed patients, bortezomib treatment could overcome their bad prognosis by raising their progression-free survival to equal that of patients with high RPL5 expression. In conclusion, our genetic data restrict the MDR on 1p22 to EVI5 and RPL5 and although the role of these genes in promoting MM progression remains to be determined, we identify RPL5 mRNA expression as a biomarker for initial response to bortezomib in relapsed patients and subsequent survival benefit after long-term treatment in newly diagnosed and relapsed patients

    Oncogenic cooperation between TCF7-SPI1 and NRAS(G12D) requires β-catenin activity to drive T-cell acute lymphoblastic leukemia

    Full text link
    Spi-1 Proto-Oncogene (SPI1) fusion genes are recurrently found in T-cell acute lymphoblastic leukemia (T-ALL) cases but are insufficient to drive leukemogenesis. Here we show that SPI1 fusions in combination with activating NRAS mutations drive an immature T-ALL in vivo using a conditional bone marrow transplant mouse model. Addition of the oncogenic fusion to the NRAS mutation also results in a higher leukemic stem cell frequency. Mechanistically, genetic deletion of the β-catenin binding domain within Transcription factor 7 (TCF7)-SPI1 or use of a TCF/β-catenin interaction antagonist abolishes the oncogenic activity of the fusion. Targeting the TCF7-SPI1 fusion in vivo with a doxycycline-inducible knockdown results in increased differentiation. Moreover, both pharmacological and genetic inhibition lead to down-regulation of SPI1 targets. Together, our results reveal an example where TCF7-SPI1 leukemia is vulnerable to pharmacological targeting of the TCF/β-catenin interaction

    High Accuracy Mutation Detection in Leukemia on a Selected Panel of Cancer Genes

    Get PDF
    <div><p>With the advent of whole-genome and whole-exome sequencing, high-quality catalogs of recurrently mutated cancer genes are becoming available for many cancer types. Increasing access to sequencing technology, including bench-top sequencers, provide the opportunity to re-sequence a limited set of cancer genes across a patient cohort with limited processing time. Here, we re-sequenced a set of cancer genes in T-cell acute lymphoblastic leukemia (T-ALL) using Nimblegen sequence capture coupled with Roche/454 technology. First, we investigated how a maximal sensitivity and specificity of mutation detection can be achieved through a benchmark study. We tested nine combinations of different mapping and variant-calling methods, varied the variant calling parameters, and compared the predicted mutations with a large independent validation set obtained by capillary re-sequencing. We found that the combination of two mapping algorithms, namely <em>BWA-SW</em> and <em>SSAHA2</em>, coupled with the variant calling algorithm <em>Atlas-SNP2</em> yields the highest sensitivity (95%) and the highest specificity (93%). Next, we applied this analysis pipeline to identify mutations in a set of 58 cancer genes, in a panel of 18 T-ALL cell lines and 15 T-ALL patient samples. We confirmed mutations in known T-ALL drivers, including PHF6, NF1, FBXW7, NOTCH1, KRAS, NRAS, PIK3CA, and PTEN. Interestingly, we also found mutations in several cancer genes that had not been linked to T-ALL before, including JAK3. Finally, we re-sequenced a small set of 39 candidate genes and identified recurrent mutations in TET1, SPRY3 and SPRY4. In conclusion, we established an optimized analysis pipeline for Roche/454 data that can be applied to accurately detect gene mutations in cancer, which led to the identification of several new candidate T-ALL driver mutations.</p> </div

    HLA-I diversity and tumor mutational burden by comprehensive next-generation sequencing as predictive biomarkers for the treatment of non-small cell lung cancer with PD-(L)1 inhibitors

    Get PDF
    Objectives: Immune checkpoint inhibitors (ICIs) improved outcomes in non-small cell lung cancer (NSCLC) patients. We report the predictive utility of human leukocyte antigen class I (HLA-I) diversity and tumor mutational burden (TMB) by comprehensive next-generation sequencing.Methods: 126 patients were included. TMB high was defined as >= 10 nonsynonymous mutations/Mb. Patients exhibit high HLA-I diversity if at least one locus was in the upper 15th percentile for DNA alignment scores.Results: No difference in response rate (RR; 44.4% versus 30.9%; p = 0.1741) or 6-month survival rate (SR; 75.6% versus 77.8%; p = 0.7765) was noted between HLA-I high diversity and low diversity patients. HLA-I high diversity patients did significantly more often exhibit durable clinical benefit (DCB), defined as response or stable disease lasting minimally 6 months (64.4% [29/45] versus 43.2% [35/81]; p = 0.0223).TMB high patients exhibited higher RR (49.1% versus 25.4%; p = 0.0084) and SR 6 months after start ICI (85.5% versus 70.4%; p = 0.0468) than TMB low patients. The proportion of patients with DCB, did not differ significantly between TMB high and low subgroups (60.0% [33/55] versus 42.3% [30/71]; p = 0.0755).Patients with combined dual high TMB and HLA-I diversity had higher RR (63.2% versus 22.2%; p = 0.0033), but SR at 6 months did not differ significantly (84.2% versus 64,4%; p = 0.1536). A significantly higher rate of patients experienced DCB in dual high compared to the dual low group (73.7% [14/19] versus 35.6% [16/45]; p = 0.0052). Triple positive patients (high TMB and HLA-I diversity and PD-L1 positive) had higher RR (63.6% versus 0.0%; p = 0.0047) and SR at 6 months (100% versus 66.7%; p = 0.0378) compared to triple-negative patients.Conclusion: HLA-I diversity was able to predict durable clinical benefit in ICI treated NSCLC patients, but failed to confirm as a predictor of response or survival. TMB confirmed as a predictive biomarker

    Generation of the Fip1l1-Pdgfra fusion gene using CRISPR/Cas genome editing

    Get PDF
    status: publishe
    corecore