3,532 research outputs found

    Modified 6j-symbols and 3-manifold invariants

    No full text
    37 pages, 16 figuresInternational audienceWe show that the renormalized quantum invariants of links and graphs in the 3-sphere, derived from tensor categories in ["Modified quantum dimensions and re-normalized link invariants", arXiv:0711.4229] lead to modified 6j-symbols and to new state sum 3-manifold invariants. We give examples of categories such that the associated standard Turaev-Viro 3-manifold invariants vanish but the secondary invariants may be non-zero. The categories in these examples are pivotal categories which are neither ribbon nor semi-simple and have an infinite number of simple objects

    Perturbation analysis of the limit cycle of the free van der Pol equation

    Get PDF
    A power series expansion in the damping parameter, epsilon, of the limit cycle of the free van der Pol equation is constructed and analyzed. Coefficients in the expansion are computed in exact rational arithmetic using the symbolic manipulation system MACSYMA and using a FORTRAN program. The series is analyzed using Pade approximants. The convergence of the series for the maximum amplitude of the limit cycle is limited by two pair of complex conjugate singularities in the complex epsilon-plane. A new expansion parameter is introduced which maps these singularities to infinity and leads to a new expansion for the amplitude which converges for all real values of epsilon. Amplitudes computed from this transformed series agree very well with reported numerical and asymptotic results. For the limit cycle itself, convergence of the series expansion is limited by three pair of complex conjugate branch point singularities. Two pair remain fixed throughout the cycle, and correspond to the singularities found in the maximum amplitude series, while the third pair moves in the epsilon-plane as a function of t from one of the fixed pairs to the other. The limit cycle series is transformed using a new expansion parameter, which leads to a new series that converges for larger values of epsilon

    Relations between some invariants of algebraic varieties in positive characteristic

    Full text link
    We discuss relations between certain invariants of varieties in positive characteristic, like the a-number and the height of the Artin-Mazur formal group. We calculate the a-number for Fermat surfacesComment: 13 page

    Cusps of Hilbert modular varieties

    Get PDF
    Motivated by a question of Hirzebruch on the possible topological types of cusp cross-sections of Hilbert modular varieties, we give a necessary and sufficient condition for a manifold M to be diffeomorphic to a cusp cross-section of a Hilbert modular variety. Specialized to Hilbert modular surfaces, this proves that every Sol 3-manifold is diffeomorphic to a cusp cross-section of a (generalized) Hilbert modular surface. We also deduce an obstruction to geometric bounding in this setting. Consequently, there exist Sol 3-manifolds that cannot arise as a cusp cross-section of a 1-cusped nonsingular Hilbert modular surface.Comment: To appear in Mathematical Proceedings Cambridge Philosophical Societ

    Concept of a laser-plasma based electron source for sub-10 fs electron diffraction

    Full text link
    We propose a new concept of an electron source for ultrafast electron diffraction with sub-10~fs temporal resolution. Electrons are generated in a laser-plasma accelerator, able to deliver femtosecond electron bunches at 5 MeV energy with kHz repetition rate. The possibility of producing this electron source is demonstrated using Particle-In-Cell simulations. We then use particle tracking simulations to show that this electron beam can be transported and manipulated in a realistic beamline, in order to reach parameters suitable for electron diffraction. The beamline consists of realistic static magnetic optics and introduces no temporal jitter. We demonstrate numerically that electron bunches with 5~fs duration and containing 1.5~fC per bunch can be produced, with a transverse coherence length exceeding 2~nm, as required for electron diffraction

    Oracle Inequalities and Optimal Inference under Group Sparsity

    Full text link
    We consider the problem of estimating a sparse linear regression vector β∗\beta^* under a gaussian noise model, for the purpose of both prediction and model selection. We assume that prior knowledge is available on the sparsity pattern, namely the set of variables is partitioned into prescribed groups, only few of which are relevant in the estimation process. This group sparsity assumption suggests us to consider the Group Lasso method as a means to estimate β∗\beta^*. We establish oracle inequalities for the prediction and ℓ2\ell_2 estimation errors of this estimator. These bounds hold under a restricted eigenvalue condition on the design matrix. Under a stronger coherence condition, we derive bounds for the estimation error for mixed (2,p)(2,p)-norms with 1≤p≤∞1\le p\leq \infty. When p=∞p=\infty, this result implies that a threshold version of the Group Lasso estimator selects the sparsity pattern of β∗\beta^* with high probability. Next, we prove that the rate of convergence of our upper bounds is optimal in a minimax sense, up to a logarithmic factor, for all estimators over a class of group sparse vectors. Furthermore, we establish lower bounds for the prediction and ℓ2\ell_2 estimation errors of the usual Lasso estimator. Using this result, we demonstrate that the Group Lasso can achieve an improvement in the prediction and estimation properties as compared to the Lasso.Comment: 37 page

    New electron source concept for single-shot sub-100 fs electron diffraction in the 100 keV range

    Get PDF
    We present a method for producing sub-100 fs electron bunches that are suitable for single-shot ultrafast electron diffraction experiments in the 100 keV energy range. A combination of analytical results and state-of-the-art numerical simulations show that it is possible to create 100 keV, 0.1 pC, 20 fs electron bunches with a spotsize smaller than 500 micron and a transverse coherence length of 3 nm, using established technologies in a table-top set-up. The system operates in the space-charge dominated regime to produce energy-correlated bunches that are recompressed by established radio-frequency techniques. With this approach we overcome the Coulomb expansion of the bunch, providing an entirely new ultrafast electron diffraction source concept

    Three dimensional topological quantum field theory from Uq(gl(1∣1))U_q(\mathfrak{gl}(1 \vert 1)) and U(1∣1)U(1 \vert 1) Chern--Simons theory

    Full text link
    In this paper we introduce an unrolled quantization UqE(gl(1∣1))U_q^E(\mathfrak{gl}(1 \vert 1)) of the complex Lie super algebra gl(1∣1)\mathfrak{gl}(1 \vert 1) and use its categories of weight modules to construct and study new three dimensional non-semisimple topological quantum field theories. These theories are defined on categories of cobordisms which are decorated by ribbon graphs and cohomology classes and take values in categories of graded super vector spaces. Computations in these theories are enabled by a detailed study of the representation theory of UqE(gl(1∣1))U_q^E(\mathfrak{gl}(1 \vert 1)), both for generic and root of unity qq. We propose that by restricting to subcategories of integral weight modules we obtain topological quantum field theories which are mathematical models for Chern--Simons theory with gauge super group psl(1∣1)\mathfrak{psl}(1 \vert 1) and U(1∣1)U(1 \vert 1), as studied in the physics literature by Rozansky--Saleur and Mikhaylov. As evidence for this proposal, we match Verlinde formulae and mapping class group actions on state spaces of non-generic tori with those appearing in the physics literature. We also obtain explicit descriptions of state spaces of generic surfaces, including their graded dimensions, which go beyond results in the physics literature.Comment: 50 page
    • …
    corecore