68 research outputs found

    Histone deacetylase 3 binds to and regulates the GCMa transcription factor

    Get PDF
    Human GCMa transcription factor regulates expression of syncytin, a placental fusogenic protein mediating trophoblastic fusion. Recently, we have demonstrated that CBP-mediated GCMa acetylation underlies the activated cAMP/PKA signaling pathway that stimulates trophoblastic fusion. Because protein acetylation is a reversible modification governed by histone acetyltransferases (HATs) and histone deacetylase (HDACs), in this study we investigated the key HDACs responsible for deacetylation of GCMa and thus the reduction in GCMa activity to avoid unwanted fusion events that may have adverse effects on placental morphogenesis. We herein demonstrate that the HDAC inhibitor, trichostatin A (TSA), increases the level of acetylated GCMa and that HDAC1, 3, 4 and 5 interact with and deacetylate GCMa. Glutathione S-transferase (GST) pull-down assays further verified direct interaction between GCMa and HDAC3 or CBP and HDAC3. HDAC3 counteracts the transcriptional coactivator activity of CBP and the enhancement effect of CBP on GCMa-mediated transcriptional activation. Correlatively, we found in placental cells that HDAC3 associates with the proximal GCMa-binding site (pGBS) in the syncytin promoter and dissociates from pGBS in the presence of forskolin, which stimulates the association of CBP and GCMa with pGBS. Our studies support that trophoblastic fusion in placental morphogenesis depends on the regulation of GCMa activity by HAT and HDAC

    Differential Expression and Functional Analysis of the Tristetraprolin Family during Early Differentiation of 3T3-L1 Preadipocytes

    Get PDF
    The tristetraprolin (TTP) family comprises zinc finger-containing AU-rich element (ARE)-binding proteins consisting of three major members: TTP, ZFP36L1, and ZFP36L2. The present study generated specific antibodies against each TTP member to evaluate its expression during differentiation of 3T3-L1 preadipocytes. In contrast to the inducible expression of TTP, results indicated constitutive expression of ZFP36L1 and ZFP36L2 in 3T3-L1 preadipocytes and their phosphorylation in response to differentiation signals. Physical RNA pull-down and functional luciferase assays revealed that ZFP36L1 and ZFP36L2 bound to the 3′ untranslated region (UTR) of MAPK phosphatase-1 (MKP-1) mRNA and downregulated Mkp-1 3′UTR-mediated luciferase activity. Mkp-1 is an immediate early gene for which the mRNA is transiently expressed in response to differentiation signals. The half-life of Mkp-1 mRNA was longer at 30 min of induction than at 1 h and 2 h of induction. Knockdown of TTP or ZFP36L2 increased the Mkp-1 mRNA half-life at 1 h of induction. Knockdown of ZFP36L1, but not ZFP36L2, increased Mkp-1 mRNA basal levels via mRNA stabilization and downregulated ERK activation. Differentiation induced phosphorylation of ZFP36L1 through ERK and AKT signals. Phosphorylated ZFP36L1 then interacted with 14-3-3, which might decrease its mRNA destabilizing activity. Inhibition of adipogenesis also occurred in ZFP36L1 and TTP knockdown cells. The findings indicate that the differential expression of TTP family members regulates immediate early gene expression and modulates adipogenesis

    Role of tissue transglutaminase 2 in the acquisition of a mesenchymal-like phenotype in highly invasive A431 tumor cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cancer progression is closely linked to the epithelial-mesenchymal transition (EMT) process. Studies have shown that there is increased expression of tissue tranglutaminase (TG2) in advanced invasive cancer cells. TG2 catalyzes the covalent cross-linking of proteins, exhibits G protein activity, and has been implicated in the modulation of cell adhesion, migration, invasion and cancer metastasis. This study explores the molecular mechanisms associated with TG2's involvement in the acquisition of the mesenchymal phenotype using the highly invasive A431-III subline and its parental A431-P cells.</p> <p>Results</p> <p>The A431-III tumor subline displays increased expression of TG2. This is accompanied by enhanced expression of the mesenchymal phenotype, and this expression is reversed by knockdown of endogenous TG2. Consistent with this, overexpression of TG2 in A431-P cells advanced the EMT process. Furthermore, TG2 induced the PI3K/Akt activation and GSK3β inactivation in A431 tumor cells and this increased Snail and MMP-9 expression resulting in higher cell motility. TG2 also upregulated NF-κB activity, which also enhanced Snail and MMP-9 expression resulting in greater cell motility; interestingly, this was associated with the formation of a TG2/NF-κB complex. TG2 facilitated acquisition of a mesenchymal phenotype, which was reversed by inhibitors of PI3K, GSK3 and NF-κB.</p> <p>Conclusions</p> <p>This study reveals that TG2 acts, at least in part, through activation of the PI3K/Akt and NF-κB signaling systems, which then induce the key mediators Snail and MMP-9 that facilitate the attainment of a mesenchymal phenotype. These findings support the possibility that TG2 is a promising target for cancer therapy.</p

    Afatinib Exerts Immunomodulatory Effects by Targeting the Pyrimidine Biosynthesis Enzyme CAD

    Get PDF
    13 páginas, 7 figurasCurrent clinical trials of combined EGFR-tyrosine kinase inhibitors (TKI) and immune checkpoint blockade (ICB) therapies show no additional effect. This raises questions regarding whether EGFR-TKIs attenuate ICB-enhanced CD8+ T lymphocyte function. Here we show that the EGFR-TKI afatinib suppresses CD8+ T lymphocyte proliferation, and we identify CAD, a key enzyme of de novo pyrimidine biosynthesis, to be a novel afatinib target. Afatinib reduced tumor-infiltrating lymphocyte numbers in Lewis lung carcinoma (LLC)-bearing mice. Early afatinib treatment inhibited CD8+ T lymphocyte proliferation in patients with non-small cell lung cancer, but their proliferation unexpectedly rebounded following long-term treatment. This suggests a transient immunomodulatory effect of afatinib on CD8+ T lymphocytes. Sequential treatment of afatinib with anti-PD1 immunotherapy substantially enhanced therapeutic efficacy in MC38 and LLC-bearing mice, while simultaneous combination therapy showed only marginal improvement over each single treatment. These results suggest that afatinib can suppress CD8+ T lymphocyte proliferation by targeting CAD, proposing a timing window for combined therapy that may prevent the dampening of ICB efficacy by EGFR-TKIs. SIGNIFICANCE: This study elucidates a mechanism of afatinib-mediated immunosuppression and provides new insights into treatment timing for combined targeted therapy and immunotherapy. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/12/3270/F1.large.jpg.This study was supported by Taiwan Ministry of Science and Technology grants MOST 104-2320-B-002-044-MY3, MOST 106-2320-B-002-046-MY3, and MOST 108-2320-B-002-024-MY3, National Health Research Institutes grants NHRI-EX106-10401BI and NHRI-EX109-10725BI, National Taiwan University grants NTU107L890504 and NTU110L893503 to M.-S. Lee, and National Taiwan University Hospital grants 106-003451, 107-003849, 108-004269, and 109-004720 to C.-C. Ho. This work was also supported by MINECO grants BFU2016-80570-R and RTI2018-098084-B-I00 (AEI/FEDER, UE). The authors would like to thank the Laboratory Animal Core Facility at the College of Medicine, National Taiwan University for their servicesPeer reviewe

    Effects of MPTP, MPP(+) and Adreno-Medullin on Dopamine Metabolism in the Rat Corpus Striatum

    No full text
    154 p.Thesis (Ph.D.)--University of Illinois at Urbana-Champaign, 1988.Self-administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), a contaminant on illicit narcotic drugs, causes parkinsonism symptoms in drug addicts. Also, systemic injections of very low doses of MPTP in non-human primates produces selective destruction of the nigrostriatal dopamine neuron and severe motor impairments. That peripheral administration of a single substance selectively destroys the nigrostriatal dopaminergic system and produces symptoms and pathology comparable to parkinsonism has ignited a lot of interest in basic research of Parkinson's disease. For example, the search of MPTP-like substances, possibly neurotoxic herbicides or industrial pollutants, in the environment may provide an environmental link to the etiology of Parkinson's disease. Furthermore, the MPTP-treated primate model has made possible studies of the basal ganglia function in the progression of Parkinson's disease, which are technically or ethically infeasible in human subjects. On the other hand, tremendous efforts have been made to elucidate the mechanism, especially the neurotoxicity and selectivity, of MPTP action. So far, several neurotoxic reactions caused by MPTP and 1-methyl-4-phenylpyridine (MPP\sp+), an active metabolite of MPTP, have been demonstrated. First, oxidation of MPTP catalyzed by monoamine oxidase can generate hydrogen peroxide and other active oxygen species, which might then initiate oxidative damage to the cells. Also, MPTP and MPP\sp+ may affect dopamine metabolism which then leads to persistent depletion of dopamine. Recently, as a means to study recovery of dopamine function in a mouse model of Parkinson's disease induced by MPTP, adrenal medulla fragments were inserted directly into the striatum of the MPTP-lesioned animals. Therefore, it was of interest to examine the effects of MPTP and MPP\sp+ and of adrenal extract on dopamine metabolism in the corpus striatum. This thesis presents evidence that (1) both MPTP and MPP\sp+ have potent effects on stimulating DA release from the corpus striatum and on inhibiting DA catabolism in vitro and in vivo, (2) the majority of extracellular dopamine is taken up by the terminals and oxidized into 3,4-dihydroxyphenylacetic acid (DOPAC) and (3) a glycoprotein, tentatively named adrenomedullin, is present in the adrenal gland and has potent dopamine-releasing activity in the corpus striatum.U of I OnlyRestricted to the U of I community idenfinitely during batch ingest of legacy ETD

    Methylglyoxal in cells elicits a negative feedback loop entailing transglutaminase 2 and glyoxalase 1

    Get PDF
    Glyoxalase 1 (GlxI) is the key enzyme that converts the highly reactive α-oxo-aldehydes into the corresponding α-hydroxy acids using l-glutathione as a cofactor. In our preliminary data, GlxI was identified as a substrate of transglutaminase 2 (TG2), a ubiquitous enzyme with multiple functions. According to the catalytic properties of TG2, protein cross-linking, polyamine conjugation, and/or deamidation are potential post-translational modifications. In this article, we have demonstrated that TG2 catalyzes either polyamine conjugation or deamidation to GlxI depending on the presence of polyamines or not. Deamidation leads to activation of GlxI while polyamine conjugation results in activation of GlxI as well as stabilization of GlxI against denaturation treatment. In cultured HeLa cells, methylglyoxal challenge causes increase in intracellular levels of reactive oxygen species (ROS) and calcium leading to TG2 activation and subsequent transamidation and activation of GlxI. The inhibition of TG2 significantly weakens the cell resistance to the methylglyoxal challenge. Thus, GlxI is a novel substrate of TG2 and is activated by TG2 in vitro and in cellulo. Exposure to methylglyoxal elicits a negative feedback loop entailing ROS, calcium, TG2 and GlxI, thus leading to attenuation of the increase in the methylglyoxal level. The results imply that cancer cells highly express TG2 or GlxI can endure the oxidative stress derived from higher glycolytic flux and may gain extra growth advantage from the aerobic glycolysis

    Biochemical Regulation of the Glyoxalase System in Response to Insulin Signaling

    No full text
    Methylglyoxal (MG) is a reactive glycation metabolite and potentially induces dicarbonyl stress. The production of MG in cells is increased along with an increase in carbohydrate metabolism. The efficiency of the glyoxalase system, consisting of glyoxalase 1 (GlxI) and glyoxalase 2 (GlxII), is crucial for turning the accumulated MG into nontoxic metabolites. Converting MG-glutathione hemithioacetal to S-d-lactoylglutathione by GlxI is the rate-determining step of the enzyme system. In this study, we found lactic acid accumulated during insulin stimulation in cells, however, cellular MG and S-d-lactoylglutathione also increased due to the massive flux of glycolytic intermediates. The insulin-induced accumulation of MG and S-d-lactoylglutathione were efficiently removed by the treatment of metformin, possibly via affecting the glyoxalase system. With the application of isotopic 13C3-MG, the flux of MG from extracellular and intracellular origins was dissected. While insulin induced an influx of extracellular MG, metformin inhibited the trafficking of MG across the plasma membrane. Therefore, metformin could maintain the extracellular MG by means of reducing the secretion of MG rather than facilitating the scavenging. In addition, metformin may affect the glyoxalase system by controlling the cellular redox state through replenishing reduced glutathione. Overall, alternative biochemical regulation of the glyoxalase system mediated by insulin signaling or molecules like biguanides may control cellular MG homeostasis
    corecore