124 research outputs found

    The Effect of Spatial Gradients in Stellar Mass-to-Light Ratio on Black Hole Mass Measurements

    Get PDF
    We have tested the effect of spatial gradients in stellar mass-to-light ratio (Y) on measurements of black hole masses (MBH) derived from stellar orbit superposition models. Such models construct a static gravitational potential for a galaxy and its central black hole, but typically assume spatially uniform Y. We have modeled three giant elliptical galaxies with gradients alpha = d(log Y)/d(log r) from -0.2 to +0.1. Color and line strength gradients suggest mildly negative alpha in these galaxies. Introducing a negative (positive) gradient in Y increases (decreases) the enclosed stellar mass near the center of the galaxy and leads to systematically smaller (larger) MBH measurements. For models with alpha = -0.2, the best-fit values of MBH are 28%, 27%, and 17% lower than the constant-Y case, in NGC 3842, NGC 6086, and NGC 7768, respectively. For alpha = +0.1, MBH are 14%, 22%, and 17% higher than the constant-Y case for the three respective galaxies. For NGC 3842 and NGC 6086, this bias is comparable to the statistical errors from individual modeling trials. At larger radii, negative (positive) gradients in Y cause the total stellar mass to decrease (increase) and the dark matter fraction within one effective radius to increase (decrease).Comment: 6 pages, 4 figures, 1 table. To appear in ApJ

    Dynamical Measurements of Black Hole Masses in Four Brightest Cluster Galaxies at 100 Mpc

    Full text link
    We present stellar kinematics and orbit superposition models for the central regions of four Brightest Cluster Galaxies (BCGs), based upon integral-field spectroscopy at Gemini, Keck, and McDonald Observatories. Our integral-field data span radii from < 100 pc to tens of kpc. We report black hole masses, M_BH, of 2.1 +/- 1.6 x 10^10 M_Sun for NGC 4889, 9.7 + 3.0 - 2.6 x 10^9 M_Sun for NGC 3842, and 1.3 + 0.5 - 0.4 x 10^9 M_Sun for NGC 7768. For NGC 2832 we report an upper limit of M_BH < 9 x 10^9 M_Sun. Stellar orbits near the center of each galaxy are tangentially biased, on comparable spatial scales to the galaxies' photometric cores. We find possible photometric and kinematic evidence for an eccentric torus of stars in NGC 4889, with a radius of nearly 1 kpc. We compare our measurements of M_BH to the predicted black hole masses from various fits to the relations between M_BH and stellar velocity dispersion, luminosity, or stellar mass. The black holes in NGC 4889 and NGC 3842 are significantly more massive than all dispersion-based predictions and most luminosity-based predictions. The black hole in NGC 7768 is consistent with a broader range of predictions.Comment: 24 pages, 18 figures. Accepted for publication in Ap

    The Two-Point Correlation of 2QZ Quasars and 2SLAQ LRGs: From a Quasar Fueling Perspective

    Full text link
    Public data from the 2dF quasar survey (2QZ) and 2dF/SDSS LRG & QSO (2SLAQ), with their vast reservoirs of spectroscopically located and identified sources, afford us the chance to more accurately study their real space correlations in the hopes of identifying the physical processes that trigger quasar activity. We have used these two public databases to measure the projected cross correlation, ωp\omega_p, between quasars and luminous red galaxies. We find the projected two-point correlation to have a fitted clustering radius of r0,=5.3±0.6r_0, = 5.3 \pm 0.6 and a slope, γ=1.83±0.42\gamma =1.83 \pm 0.42 on scales from 0.7-27h1h^{-1}Mpc. We attempt to understand this strong correlation by separating the LRG sample into 2 populations of blue and red galaxies. We measure at the cross correlation with each population. We find that these quasars have a stronger correlation amplitude with the bluer, more recently starforming population in our sample than the redder passively evolving population, which has a correlation that is much more noisy and seems to flatten on scales <5h1< 5h^{-1}Mpc. We compare this result to published work on hierarchical models. The stronger correlation of bright quasars with LRGs that have undergone a recent burst of starformation suggests that the physical mechanisms that produce both activities are related and that minor mergers or tidal effects may be important triggers of bright quasar activity and/or that bright quasars are less highly biased than faint quasars.Comment: Accepted for publication in Ap

    Updated Mass Scaling Relations for Nuclear Star Clusters and a Comparison to Supermassive Black Holes

    Full text link
    We investigate whether nuclear star clusters and supermassive black holes follow a common set of mass scaling relations with their host galaxy's properties, and hence can be considered to form a single class of central massive object. We have compiled a large sample of galaxies with measured nuclear star cluster masses and host galaxy properties from the literature and fit log-linear scaling relations. We find that nuclear star cluster mass, M_{NC}, correlates most tightly with the host galaxy's velocity dispersion: log M_{NC} = (2.11 \pm 0.31) log (\sigma/54) + (6.63 \pm 0.09), but has a slope dramatically shallower than the relation defined by supermassive black holes. We find that the nuclear star cluster mass relations involving host galaxy (and spheroid) luminosity and stellar and dynamical mass, intercept with but are in general shallower than the corresponding black hole scaling relations. In particular M_{NC} \propto {M}_{Gal,dyn}^{0.55 \pm 0.15}; the nuclear cluster mass is not a constant fraction of its host galaxy or spheroid mass. We conclude that nuclear stellar clusters and supermassive black holes do not form a single family of central massive objects.Comment: 8 pages, 3 figure

    Spectral Energy Distribution Fitting of Hetdex Pilot Survey Ly-alpha Emitters in Cosmos and Goods-N

    Get PDF
    We use broadband photometry extending from the rest-frame UV to the near-IR to fit the individual spectral energy distributions of 63 bright (L(Ly-alpha) greater than 10(exp 43) erg s(exp 1) Ly-alpha emitting galaxies (LAEs) in the redshift range 1.9 less than z less than 3.6. We find that these LAEs are quite heterogeneous, with stellar masses that span over three orders of magnitude, from 7.5 greater than logM/solar mass less than 10.5. Moreover, although most LAEs have small amounts of extinction, some high-mass objects have stellar reddenings as large as E(B V ) is approximately 0.4. Interestingly, in dusty objects the optical depths for Ly-alpha and the UV continuum are always similar, indicating that Ly photons are not undergoing many scatters before escaping their galaxy. In contrast, the ratio of optical depths in low-reddening systems can vary widely, illustrating the diverse nature of the systems. Finally, we show that in the star-formation-rate-log-mass diagram, our LAEs fall above the "main-sequence" defined by z is approximately 3 continuum selected star-forming galaxies. In this respect, they are similar to submillimeter-selected galaxies, although most LAEs have much lower mass

    The developmental pathway for CD103(+)CD8+ tissue-resident memory T cells of skin

    No full text
    Tissue-resident memory T cells (T(RM) cells) provide superior protection against infection in extralymphoid tissues. Here we found that CD103(+)CD8(+) T(RM) cells developed in the skin from epithelium-infiltrating precursor cells that lacked expression of the effector-cell marker KLRG1. A combination of entry into the epithelium plus local signaling by interleukin 15 (IL-15) and transforming growth factor-β (TGF-β) was required for the formation of these long-lived memory cells. Notably, differentiation into T(RM) cells resulted in the progressive acquisition of a unique transcriptional profile that differed from that of circulating memory cells and other types of T cells that permanently reside in skin epithelium. We provide a comprehensive molecular framework for the local differentiation of a distinct peripheral population of memory cells that forms a first-line immunological defense system in barrier tissues.Supported by National Health and Medical Research Council of Australia and Australian Research Council

    FIRST-2MASS Red Quasars: Transitional Objects Emerging from the Dust

    Get PDF
    We present a sample of 120 dust-reddened quasars identified by matching radio sources detected at 1.4 GHz in the FIRST survey with the near-infrared 2MASS catalog and color-selecting red sources. Optical and/or near-infrared spectroscopy provide broad wavelength sampling of their spectral energy distributions that we use to determine their reddening, characterized by E(B-V). We demonstrate that the reddening in these quasars is best-described by SMC-like dust. This sample spans a wide range in redshift and reddening (0.1 < z < 3, 0.1 < E(B-V) < 1.5), which we use to investigate the possible correlation of luminosity with reddening. At every redshift, dust-reddened quasars are intrinsically the most luminous quasars. We interpret this result in the context of merger-driven quasar/galaxy co-evolution where these reddened quasars are revealing an emergent phase during which the heavily obscured quasar is shedding its cocoon of dust prior to becoming a "normal" blue quasar. When correcting for extinction, we find that, depending on how the parent population is defined, these red quasars make up < 15-20% of the luminous quasar population. We estimate, based on the fraction of objects in this phase, that its duration is 15-20% as long as the unobscured, blue quasar phase.Comment: 21 pages, 17 figures plus a spectral atlas. Accepted for publication in the Astrophysical Journa
    corecore