71 research outputs found

    The boson-fermion model with on-site Coulomb repulsion between fermions

    Full text link
    The boson-fermion model, describing a mixture of itinerant electrons hybridizing with tightly bound electron pairs represented as hard-core bosons, is here generalized with the inclusion of a term describing on-site Coulomb repulsion between fermions with opposite spins. Within the general framework of the Dynamical Mean-Field Theory, it is shown that around the symmetric limit of the model this interaction strongly competes with the local boson-fermion exchange mechanism, smoothly driving the system from a pseudogap phase with poor conducting properties to a metallic regime characterized by a substantial reduction of the fermionic density. On the other hand, if one starts from correlated fermions described in terms of the one-band Hubbard model, the introduction in the half-filled insulating phase of a coupling with hard-core bosons leads to the disappearance of the correlation gap, with a consequent smooth crossover to a metallic state.Comment: 7 pages, 6 included figures, to appear in Phys. Rev.

    A Local Moment Approach to magnetic impurities in gapless Fermi systems

    Full text link
    A local moment approach is developed for the single-particle excitations of a symmetric Anderson impurity model (AIM), with a soft-gap hybridization vanishing at the Fermi level with a power law r > 0. Local moments are introduced explicitly from the outset, and a two-self-energy description is employed in which the single-particle excitations are coupled dynamically to low-energy transverse spin fluctuations. The resultant theory is applicable on all energy scales, and captures both the spin-fluctuation regime of strong coupling (large-U), as well as the weak coupling regime. While the primary emphasis is on single particle dynamics, the quantum phase transition between strong coupling (SC) and (LM) phases can also be addressed directly; for the spin-fluctuation regime in particular a number of asymptotically exact results are thereby obtained. Results for both single-particle spectra and SC/LM phase boundaries are found to agree well with recent numerical renormalization group (NRG) studies. A number of further testable predictions are made; in particular, for r < 1/2, spectra characteristic of the SC state are predicted to exhibit an r-dependent universal scaling form as the SC/LM phase boundary is approached and the Kondo scale vanishes. Results for the `normal' r = 0 AIM are moreover recovered smoothly from the limit r -> 0, where the resultant description of single-particle dynamics includes recovery of Doniach-Sunjic tails in the Kondo resonance, as well as characteristic low-energy Fermi liquid behaviour.Comment: 52 pages, 19 figures, submitted to Journal of Physics: Condensed Matte

    Isosbestic points in the spectral function of correlated electrons

    Full text link
    We investigate the properties of the spectral function A(omega,U) of correlated electrons within the Hubbard model and dynamical mean-field theory. Curves of A(omega,U) vs. omega for different values of the interaction U are found to intersect near the band-edges of the non-interacting system. For a wide range of U the crossing points are located within a sharply confined region. The precise location of these 'isosbestic points' depends on details of the non-interacting band structure. Isosbestic points of dynamic quantities therefore provide valuable insights into microscopic energy scales of correlated systems.Comment: 16 pages, 5 figure

    Slave-Boson Functional-Integral Approach to the Hubbard Model with Orbital Degeneracy

    Full text link
    A slave-boson functional-integral method has been developed for the Hubbard model with arbitrary, orbital degeneracy DD. Its saddle-point mean-field theory is equivalent to the Gutzwiller approximation, as in the case of single-band Hubbard model. Our theory is applied to the doubly degenerate (D=2D = 2) model, and numerical calculations have been performed for this model in the paramagnetic states. The effect of the exchange interaction on the metal-insulator (MI) transition is discussed. The critical interaction for the MI transition is analytically calculated as functions of orbital degeneracy and electron occupancy.Comment: Latex 20 pages, 9 figures available on request to [email protected] Note: published in J. Physical Society of Japan with some minor modification

    Single-particle dynamics of the Anderson model: a local moment approach

    Full text link
    A non-perturbative local moment approach to single-particle dynamics of the general asymmetric Anderson impurity model is developed. The approach encompasses all energy scales and interaction strengths. It captures thereby strong coupling Kondo behaviour, including the resultant universal scaling behaviour of the single-particle spectrum; as well as the mixed valent and essentially perturbative empty orbital regimes. The underlying approach is physically transparent and innately simple, and as such is capable of practical extension to lattice-based models within the framework of dynamical mean-field theory.Comment: 26 pages, 9 figure

    Zero temperature metal-insulator transition in the infinite-dimensional Hubbard model

    Full text link
    The zero temperature transition from a paramagnetic metal to a paramagnetic insulator is investigated in the Dynamical Mean Field Theory for the Hubbard model. The self-energy of the effective impurity Anderson model (on which the Hubbard model is mapped) is calculated using Wilson's Numerical Renormalization Group method. Results for quasiparticle weight, spectral function and self-energy are discussed for Bethe and hypercubic lattice. In both cases, the metal-insulator transition is found to occur via the vanishing of a quasiparticle resonance which appears to be isolated from the Hubbard bands.Comment: 4 pages, 3 eps-figures include

    The Cerium volume collapse: Results from the LDA+DMFT approach

    Full text link
    The merger of density-functional theory in the local density approximation (LDA) and many-body dynamical mean field theory (DMFT) allows for an ab initio calculation of Ce including the inherent 4f electronic correlations. We solve the DMFT equations by the quantum Monte Carlo (QMC) technique and calculate the Ce energy, spectrum, and double occupancy as a function of volume. At low temperatures, the correlation energy exhibits an anomalous region of negative curvature which drives the system towards a thermodynamic instability, i.e., the γ\gamma-to-α\alpha volume collapse, consistent with experiment. The connection of the energetic with the spectral evolution shows that the physical origin of the energy anomaly and, thus, the volume collapse is the appearance of a quasiparticle resonance in the 4f-spectrum which is accompanied by a rapid growth in the double occupancy.Comment: 4 pages, 3 figure

    Absence of hysteresis at the Mott-Hubbard metal-insulator transition in infinite dimensions

    Full text link
    The nature of the Mott-Hubbard metal-insulator transition in the infinite-dimensional Hubbard model is investigated by Quantum Monte Carlo simulations down to temperature T=W/140 (W=bandwidth). Calculating with significantly higher precision than in previous work, we show that the hysteresis below T_{IPT}\simeq 0.022W, reported in earlier studies, disappears. Hence the transition is found to be continuous rather than discontinuous down to at least T=0.325T_{IPT}. We also study the changes in the density of states across the transition, which illustrate that the Fermi liquid breaks down before the gap opens.Comment: 4 pages, 4 eps-figures using epsf.st

    Strongly Correlated Electrons on a Silicon Surface: Theory of a Mott Insulator

    Full text link
    We demonstrate theoretically that the electronic ground state of the potassium-covered Si(111)-B surface is a Mott insulator, explicitly contradicting band theory but in good agreement with recent experiments. We determine the physical structure by standard density-functional methods, and obtain the electronic ground state by exact diagonalization of a many-body Hamiltonian. The many-body conductivity reveals a Brinkman-Rice metal-insulator transition at a critical interaction strength; the calculated interaction strength is well above this critical value.Comment: 4 pages; 4 figures included in text; Revte

    Similarities between the Hubbard and Periodic Anderson Models at Finite Temperatures

    Full text link
    The single band Hubbard and the two band Periodic Anderson Hamiltonians have traditionally been applied to rather different physical problems - the Mott transition and itinerant magnetism, and Kondo singlet formation and scattering off localized magnetic states, respectively. In this paper, we compare the magnetic and charge correlations, and spectral functions, of the two systems. We show quantitatively that they exhibit remarkably similar behavior, including a nearly identical topology of the finite temperature phase diagrams at half-filling. We address potential implications of this for theories of the rare earth ``volume collapse'' transition.Comment: 4 pages (RevTeX) including 4 figures in 7 eps files; as to appear in Phys. Rev. Let
    corecore