18 research outputs found

    Clinical phenotypic variability in an Italian family bearing the IVS6+ 5_8delGTGA mutation in PGRN gene

    Get PDF
    Background Frontotemporal dementia (FTD) is a complex presenile disorder characterized by behavioural changes and executive functions, expression of fronto-temporal degeneration. Hereditary FTD accounts for 20-30% of cases and, in the past decade, mutations in the microtubule associated protein tau (MAPT)gene were identified as a main genetic causes of familial FTD. In 2006, mutations in the gene encoding progranulin (PGRN) were reported, to account for a wide part of the familial FTD cases. Clinically, an high phenotypic variability within and among the kindreds is reported in the familial FTD associated with PGRN mutations and occasionally the memory deficits are the first symptoms, resembling Alzheimer's disease (AD). We report an Italian family with dementia associated with a PGRN mutation characterized by a deletion of 4 base pairs inside the intron 6 of the gene, leading to haploin sufficiency In our kindred, all three affected patients carried the mutation, but presented very different clinical phenotypes, evoking FTD, AD and rapidly-progressive dementia mimicking prion disease. Methods Informations on the members of the first, second and third generations were obtained conducting interviews with relatives, while for the three patients studied, the clinical evidence of dementia symptoms and their characterization was documented directly with sequential neurological examinations, cognitive assessments and neuroimaging. Blood sample collection and DNA extraction from peripheral blood lymphocytes for genetic analysis were performed after written informed consent of the patients. Results In our pedigree, the PGRN mutated patients are affected by dementia with three different clinical pictures: FTD, AD and rapidly progressive dementia mimicking prion disease. Neuropsychological examinations supported these diagnoses, documenting generalized deficits of cortical functions in AD patient and deficits in executive functions and in language in FTD patient. Regarding neuroimaging, in the same two cases MRI results do not correspond to the clinical diagnosis. Conclusions These findings confirms the marked heterogeneity of the clinico-radiological features in patients with PGNR mutations and underline the need of considering mutations of this gene as causes of familial dementing diseases with atypical or uncommon features or discrepancies between the clinical and the neuroimaging findings

    Localization of parathyroid enlargement: experience with technetium-99m methoxyisobutylisonitrile and thallium-201 scintigraphy, ultrasonography and computed tomography

    Full text link
    Technetium-99m methoxyisobutylisonitrile (MIBI), like thallium-201, has recently been introduced as a myocardial perfusion agent and is now also showing very promising results in parathyroid scintigrapy. The results of 201 Tl/ 99m Tc-pertechnetate and 99m Tc-MIBI/ 99m Tc-pertechnetate subtraction scintigraphy, ultrasonography and computed tomography are presented in a series of 43 patients operated on for hyperparathyroidism. All four imaging modalities were confirmed to be reliable, scintigraphy being the most accurate. Sensitivities ranged from 81% to 95%, that of 99m Tc-MIBI being the highest. Moreover this tracer, which has more favourable physical and also biochemical properties, yielded images of superior quality. This allowed localization of the lesion by visual inspection only in as many as 86% of the patients with positive 99m Tc-MIBI/ 99m Tc-pertechnetate subtraction scintigraphy. We believe that the higher sensitivity, superior image quality and lower cost of 99m Tc-MIBI imaging will make 99m Tc-MIBI the new radiopharmaceutical of choice for parathyroid scintigraphy (when one takes into account the stability of labelling with large activities it is possible to perform three or four cardiac studies together with one parathyroid scintigraphic examination using one lyophililzed vial).Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46834/1/259_2004_Article_BF00182301.pd

    Systemic perfusion: a method of enhancing relative tumor uptake of radiolabeled monoclonal antibodies

    Full text link
    We evaluated the feasibility of systemic vascular perfusion with saline (mimicking plasmapheresis) as a method to enhance tumor-specific monoclonal antibody (MoAb) tumor/background ratios. Initially, groups of rats were injected intravenously (i.v.) with 131I-5G6.4 MoAb (murine IgG2aK reactive with ovarian carcinoma). These animal's radioactivity levels were determined by dose calibrator and they were imaged before and after perfusion which was conducted at 4 or 24 h post-antibody injection. Animals were sacrificed after perfusion, as were controls, and normal organ radioactivity levels determined. In addition, nude mice bearing HTB77 ovarian cancers subcutaneously were injected i.v. with 131I-5G6.4 MoAb and were imaged before and after systemic perfusion with saline 24 h post-5G6.4 injection. Perfusion in rats dropped whole-body 5G6.4 levels significantly at both perfusion times (P P P < 0.05). These studies show that (1) much background antibody radioactivity can be removed using whole-body perfusion with saline, (2) that the decline in whole body activity is larger with 4 than 24 h perfusion and (3) tumor imaging can be enhanced by this approach. This and similar approaches that increase relative tumor antibody uptake such as plasmapheresis may be useful in imaging and therapy with radiolabeled antibodies.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/27583/1/0000627.pd

    The intraperitoneal delivery of radiolabeled monoclonal antibodies: studies on the regional delivery advantage

    Full text link
    The i.p. delivery of murine monoclonal antibody was compared with i.v. delivery in normal mice and rats, in normal nude mice and in those with i.p. human ovarian carcinoma xenografts. In normal rats, all classes of antibodies and antibody fragments evaluated were cleared from the peritoneal cavity at comparable rates. The regional delivery (Rd 1 ) advantage to the peritoneal cavity following i.p. delivery was thus most dependent on the rate of clearance of the antibody or fragment from the blood stream. Determining the exact i.p. delivery advantage was problematic due to the difficulty in reliably obtaining peritoneal fluid later than 9–10 h after i.p. injection in normal animals. During the first 9 h following i.p. injection, the Rd(0–9/0–9) was, for a murine IgG2ak Fab>F(ab′) 2 >IgG (at 13.6>10>7.9). Two murine IgMs evaluated differed in Rd(0–9) at 27.1 and 9.2 respectively. When blood levels were extrapolated to infinity, these Rd (0–9/∞) values were considerably lower with the Fab having the highest Rd at 4.67. The i.p. Rd advantage was almost solely due to the i.p. antibody levels seen in the first 24 h after injection, as after that time, blood levels become comparable to those seen following i.v. injection. Normal tissues obtained at sacrifice 5–7 days after i.p. injection. Normal tissues obtained at sacrifice 5–7 days after i.p. or i.v. injection in rats showed comparable levels of radioantibody activity, whether the injection was i.p. or i.v. (except for higher diaphragmatic levels following i.p. delivery). In nude mice with i.p. human-derived ovarian tumors, intact IgG clearance from the peritoneal cavity to the blood was considerably slower than in normal animals, and early i.p. tumor uptake of specific antibody was significantly higher than that following i.v. antibody delivery. With higher early tumor uptake and lower systemic exposure, early tumor/nontumor ratios were significantly greater than those for i.v. delivery, though not beyond 48 h after i.p. injection. This study demonstrates the pharmacokinetic rationale for i.p. monoclonal antibody delivery, especially for agents cleared rapidly from the blood, such as antibody fragments. In addition, definite i.p. delivery benefit for antibody specific to i.p. tumors in the i.p. ovarian cancer system was shown soon after injection. These data regarding i.p. antibody delivery should be useful in rationally planning diagnostic and therapeutic studies involving the i.p. delivery of unmodified and immunoconjugated monoclonal antibodies.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46854/1/262_2004_Article_BF00199929.pd

    The role of positron emission tomography with 18F-fluorodeoxyglucose integrated with computed tomography in the evaluation of patients with multiple myeloma undergoing allogeneic stem cell transplantation

    Get PDF
    Positron emission tomography (PET) integrated with computed tomography (PET/CT) has been reported to be useful for screening myelomatous lesions at diagnosis in patients with multiple myeloma (MM) and for monitoring response to autologous stem cell transplantation (auto-SCT). The aim of the study was to evaluate the prognostic significance of PET/CT in MM patients who received allogeneic stem cell transplantation (allo-SCT). Patients who underwent upfront auto-SCT followed by allo-SCT, either as consolidation or salvage treatment, were studied with PET/CT before and/or within 6 months after allo-SCT. The number, the maximum standard uptake value (SUV), and the location (medullary or extramedullary) of focal lesions (FLs) were recorded and investigated as predictors of progression-free survival (PFS) and overall survival (OS) by univariate and multivariate analyses. Fifty-four patients had a PET/CT scan before allo-SCT. Of these, 22 patients (41%) had a negative PET/CT scan, 11 patients (20%) showed 1 to 3 FLs, and 21 patients (39%) had either a diffuse bone marrow involvement or more than 3 FLs. SUV was >4.2 in 21 patients (39%) and extramedullary disease (EMD) was present in 6 patients (11%). Multivariate analysis of prognostic factors before allo-SCT showed that persistence of EMD at transplantation was an independent predictor of poor PFS, whereas OS was negatively influenced by unrelated donor and SUV > 4.2. Fifty-nine patients had a PET/CT scan within 6 months after allo-SCT. Multivariate analysis of post-treatment variables showed that persistence of EMD and failure to obtain complete response or very good partial response after allo-SCT were strongly associated with shorter PFS and OS. Of the 46 patients with evaluable PET/CT scans both before and 6 months after allo-SCT, the 23 patients who maintained or reached a PET complete remission showed a significantly prolonged PFS and OS compared with the 23 patients with persistence of any PET positivity (2-year PFS: 51% versus 25%, P = .03; 2-year OS: 81% versus 47%, P = .001). This study indicates that PET/CT imaging before and after allo-SCT is significantly associated with the outcome, suggesting the utility of this technique for MM staging before allo-SCT and for response monitoring after the transplantation
    corecore