113 research outputs found

    Mediterranean spotted fever: clinical and laboratory characteristics of 415 Sicilian children

    Get PDF
    BACKGROUND: Mediterranean spotted fever (MSF) is an acute febrile, zoonotic disease caused by Rickettsia conorii and transmitted to humans by the brown dogtick Rhipicephalus sanguineus. Nearly four hundred cases are reported every year (mainly from June to September) on the Italian island of Sicily. The aim of the study was to analyze the clinical and laboratory characteristics of patients with MSF and the efficacy of the drugs administered. METHODS: Our study was carried out on 415 children with MSF, during the period January 1997 – December 2004, at the "G. Di Cristina" Children's hospital in Palermo, Sicily, Italy. On admission patients' clinical history, physical and laboratory examination and indirect immunofluorescence antibody test (IFAT) for Rickettsia conorii were performed. Diagnosis was considered confirmed if the patients had an MSF diagnostic score greater than or equal to 25 according to the Raoult's scoring system. All patients were treated with chloramphenicol or with macrolides (clarithromycin or azithromycin). RESULTS: Fever, rash and tache noire were present in 386 (93%), 392 (94.5%) and 263 (63.4%) cases respectively. Eighteen (4.6%) children showed atypical exanthema. Chloramphenicol and newer macrolides all appeared to be effective and safe therapies. CONCLUSION: Clinical features of 415 children with MSF were similar to those reported by other authors except for a lower incidence of headache, arthralgia and myalgia and a higher frequency of epato-splenomegaly. Concerning therapy, clarithromycin can be considered a valid alternative therapy to tetracyclines or chloramphenicol especially for children aged < eight years

    Chemotactic and Inflammatory Responses in the Liver and Brain Are Associated with Pathogenesis of Rift Valley Fever Virus Infection in the Mouse

    Get PDF
    Rift Valley fever virus (RVFV) is a major human and animal pathogen associated with severe disease including hemorrhagic fever or encephalitis. RVFV is endemic to parts of Africa and the Arabian Peninsula, but there is significant concern regarding its introduction into non-endemic regions and the potentially devastating effect to livestock populations with concurrent infections of humans. To date, there is little detailed data directly comparing the host response to infection with wild-type or vaccine strains of RVFV and correlation with viral pathogenesis. Here we characterized clinical and systemic immune responses to infection with wild-type strain ZH501 or IND vaccine strain MP-12 in the C57BL/6 mouse. Animals infected with live-attenuated MP-12 survived productive viral infection with little evidence of clinical disease and minimal cytokine response in evaluated tissues. In contrast, ZH501 infection was lethal, caused depletion of lymphocytes and platelets and elicited a strong, systemic cytokine response which correlated with high virus titers and significant tissue pathology. Lymphopenia and platelet depletion were indicators of disease onset with indications of lymphocyte recovery correlating with increases in G-CSF production. RVFV is hepatotropic and in these studies significant clinical and histological data supported these findings; however, significant evidence of a pro-inflammatory response in the liver was not apparent. Rather, viral infection resulted in a chemokine response indicating infiltration of immunoreactive cells, such as neutrophils, which was supported by histological data. In brains of ZH501 infected mice, a significant chemokine and pro-inflammatory cytokine response was evident, but with little pathology indicating meningoencephalitis. These data suggest that RVFV pathogenesis in mice is associated with a loss of liver function due to liver necrosis and hepatitis yet the long-term course of disease for those that might survive the initial hepatitis is neurologic in nature which is supported by observations of human disease and the BALB/c mouse model

    Revisiting perioperative chemotherapy: the critical importance of targeting residual cancer prior to wound healing

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Scientists and physicians have long noted similarities between the general behavior of a cancerous tumor and the physiological process of wound healing. But it may be during metastasis that the parallels between cancer and wound healing are most pronounced. And more particularly and for the reasons detailed in this paper, any cancer remaining after the removal of a solid tumor, whether found in micrometastatic deposits in the stroma or within the circulation, may be heavily dependent on wound healing pathways for its further survival and proliferation.</p> <p>Discussion</p> <p>If cancer cells can hijack the wound healing process to facilitate their metastatic spread and survival, then the period immediately after surgery may be a particularly vulnerable period of time for the host, as wound healing pathways are activated and amplified after the primary tumor is removed. Given that we often wait 30 days or more after surgical removal of the primary tumor before initiating adjuvant chemotherapy to allow time for the wound to heal, this paper challenges the wisdom of that clinical paradigm, providing a theoretical rationale for administering therapy during the perioperative period.</p> <p>Summary</p> <p>Waiting for wound healing to occur before initiating adjuvant therapies may be seriously compromising their effectiveness, and patients subsequently rendered incurable as a result of this wait. Clinical trials to establish the safety and effectiveness of administering adjuvant therapies perioperatively are needed. These therapies should target not only the residual cancer cells, but also the wound healing pathway utilized by these cells to proliferate and metastasize.</p

    The TOP-SCOPE Survey of Planck Galactic Cold Clumps: Survey Overview and Results of an Exemplar Source, PGCC G26.53+0.17

    Get PDF
    This is the final version. Available from American Astronomical Society via the DOI in this record.The low dust temperatures (<14 K) of Planck Galactic cold clumps (PGCCs) make them ideal targets to probe the initial conditions and very early phase of star formation. "TOP-SCOPE" is a joint survey program targeting ∼2000 PGCCs in J = 1-0 transitions of CO isotopologues and ∼1000 PGCCs in 850 μm continuum emission. The objective of the "TOP-SCOPE" survey and the joint surveys (SMT 10 m, KVN 21 m, and NRO 45 m) is to statistically study the initial conditions occurring during star formation and the evolution of molecular clouds, across a wide range of environments. The observations, data analysis, and example science cases for these surveys are introduced with an exemplar source, PGCC G26.53+0.17 (G26), which is a filamentary infrared dark cloud (IRDC). The total mass, length, and mean line mass (M/L) of the G26 filament are ∼6200 M, ∼12 pc, and ∼500 Mpc-1, respectively. Ten massive clumps, including eight starless ones, are found along the filament. The most massive clump as a whole may still be in global collapse, while its denser part seems to be undergoing expansion owing to outflow feedback. The fragmentation in the G26 filament from cloud scale to clump scale is in agreement with gravitational fragmentation of an isothermal, nonmagnetized, and turbulent supported cylinder. A bimodal behavior in dust emissivity spectral index (β) distribution is found in G26, suggesting grain growth along the filament. The G26 filament may be formed owing to large-scale compression flows evidenced by the temperature and velocity gradients across its natal cloud.German Research FoundationJoint Research Fund in AstronomyTop Talents Program of Yunnan ProvinceAcademy of FinlandMinistry of Education, Science, and TechnologyNational Research Foundation of KoreaChinese Academy of SciencesMinistry of Science and Technology of TaiwanEuropean Research Counci

    A Galerkin approach for modelling the pantograph-catenary interaction

    No full text
    The pantograph-catenary interaction was modelled for high-speed electric and hybrid trains. A lumped-mass pantograph model was used and the overhead wires were modelled as Euler-Bernoulli beams. Each vertical and horizontal wire deflection was decomposed into an infinite series of spatial basis functions, which were chosen to be the eigenmodes of the Euler-Bernoulli PDE, and corresponding time functions. The boundary conditions were used to evaluate the spatial basis functions and reduce the PDEs to ODEs in terms of the time functions. Elimination of variables was used to remove the algebraic contact constraints and reduce the overall index-three DAE to an ODE. This linear, time-varying ODE was solved by integration and the elimination process was reversed in order to recover the original states. The Simulink model was validated against the 2002 and 2018 European Standards, BS:EN 50318:2002 and BS:EN 50318:2018 respectively. In both cases, the model produced accurate results with exceptional simulation speeds

    A new infrared spectral component of the quasar 3C273

    No full text
    Following the dramatic infrared to millimetre-wavelength flare seen in the quasar 3C273 during 19831, we have continued to monitor its overall continuum emission. Recent measurements show that the 10-µm to 3-mm emission has decayed to a level well below any seen previously2,3, while the 1–4-µm emission has remained relatively constant. This behaviour has revealed the presence of an apparently non-variable component which dominates the near-infrared emission in 3C273 and includes the small ‘bump’ at ~3.5 µm in the power-law continuum previously noted by Neugebauer et al. 3. The origin of this component is probably not thermal re-radiation by dust grains but may be due to free–free emission from very dense, broad-line clouds4

    The 2014International Workshop on Alport Syndrome.

    Get PDF
    Alport syndrome, historically referred to as hereditary glomerulonephritis with sensorineural deafness and anterior lenticonus, is a genetic disease of collagen α3α4α5(IV) resulting in renal failure. The collagen α3α4α5(IV) heterotrimer forms a network that is a major component of the kidney glomerular basement membrane (GBM) and basement membranes in the cochlea and eye. Alport syndrome, estimated to affect 1 in 5000-10,000 individuals, is caused by mutations in any one of the three genes that encode the α chain components of the collagen α3α4α5(IV) heterotrimer: COL4A3, COL4A4, and COL4A5. Although angiotensin-converting enzyme inhibition is effective in Alport syndrome patients for slowing progression to end-stage renal disease, it is neither a cure nor an adequate long-term protector. The 2014 International Workshop on Alport Syndrome, held in Oxford, UK, from January 3-5, was organized by individuals and families living with Alport syndrome, in concert with international experts in the clinical, genetic, and basic science aspects of the disease. Stakeholders from diverse communities-patient families, physicians, geneticists, researchers, Pharma, and funding organizations-were brought together so that they could meet and learn from each other and establish strategies and collaborations for the future, with the overall aim of discovering much needed new treatments to prolong kidney function
    • …
    corecore