14 research outputs found

    Oblique impact breakage unification of nonspherical particles using discrete element method

    Get PDF
    Particle breakage commonly occurs during processing of particulate materials, but a mechanistic model of particle impact breakage is not fully established. This article presents oblique impact breakage characteristics of nonspherical particles using discrete element method (DEM) simulations. Three different particle shapes, i.e. spherical, cuboidal and cylindrical, are investigated. Constituent spheres are agglomerated with bridging bonds to model the breakage characteristics under impact conditions. The effect of agglomerate shapes on the breakage pattern, damage ratio, and fragment size distribution is fully investigated. By using a newly proposed oblique impact model, unified breakage master surfaces are theoretically constructed for all the particle shapes under oblique impact conditions. The developed approach can be applied to modelling particulate processes where nonspherical particles and oblique impact breakage are prevailing.</p

    Multiscale digital twin for particle breakage in milling: From nanoindentation to population balance model

    Get PDF
    A multiscale modelling approach to integrate resultful information of particle breakage at distinct scales is presented for quantitative prediction of a milling process. The nanoindentation test of zeolite particles is carried out to provide the deterministic value of mechanical properties, prior to which the Hertz based contact theory is described. The impact pin milling test is made to measure the particle size distribution subject to three rotary speeds. The population balance model composed of selection function and breakage function is developed to predict the varying milling operations based on successful model validation. With the hybrid of theoretical, experimental and numerical avenues, a conceptual multiscale modelling roadmap with complementary strength is proposed. The best available information spanning distinct scales is scoped where the interaction of physical twin and digital twin is highlighted. Global system analysis of the key parameters provides projected confidence in milling performance beyond the existing experimental space

    Numerical Design of Microporous Carbon Binder Domains Phase in Composite Cathodes for Lithium-Ion Batteries

    Get PDF
    Lithium-ion battery (LIB) performance can be significantly affected by the nature of the complex electrode microstructure. The carbon binder domain (CBD) present in almost all LIB electrodes is used to enhance mechanical stability and facilitate electronic conduction, and understanding the CBD phase microstructure and how it affects the complex coupled transport processes is crucial to LIB performance optimization. In this work, the influence of microporosity in the CBD phase has been studied in detail for the first time, enabling insight into the relationships between the CBD microstructure and the battery performance. To investigate the effect of the CBD pore size distributions, a random field method is used to generate in silico a multiple-phase electrode structure, including bimodal pore size distributions seen in practice and microporous CBD with a tunable pore size and variable transport properties. The distribution of macropores and the microporous CBD phase substantially affected simulated battery performance, where battery specific capacity improved as the microporosity of the CBD phase increased

    Roadmap on Li-ion battery manufacturing research

    Get PDF
    Growth in the Li-ion battery market continues to accelerate, driven primarily by the increasing need for economic energy storage for electric vehicles. Electrode manufacture by slurry casting is the first main step in cell production but much of the manufacturing optimisation is based on trial and error, know-how and individual expertise. Advancing manufacturing science that underpins Li-ion battery electrode production is critical to adding to the electrode manufacturing value chain. Overcoming the current barriers in electrode manufacturing requires advances in materials, manufacturing technology, in-line process metrology and data analytics, and can enable improvements in cell performance, quality, safety and process sustainability. In this roadmap we explore the research opportunities to improve each stage of the electrode manufacturing process, from materials synthesis through to electrode calendering. We highlight the role of new process technology, such as dry processing, and advanced electrode design supported through electrode level, physics-based modelling. Progress in data driven models of electrode manufacturing processes is also considered. We conclude there is a growing need for innovations in process metrology to aid fundamental understanding and to enable feedback control, an opportunity for electrode design to reduce trial and error, and an urgent imperative to improve the sustainability of manufacture

    Roadmap on Li-ion battery manufacturing research

    Get PDF
    Growth in the Li-ion battery market continues to accelerate, driven by increasing need for economic energy storage in the electric vehicle market. Electrode manufacture is the first main step in production and in an industry dominated by slurry casting, much of the manufacturing process is based on trial and error, know-how and individual expertise. Advancing manufacturing science that underpins Li-ion battery electrode production is critical to adding value to the electrode manufacturing value chain. Overcome the current barriers in the electrode manufacturing requires advances in material innovation, manufacturing technology, in-line process metrology and data analytics to improve cell performance, quality, safety and process sustainability. In this roadmap we present where fundamental research can impact advances in each stage of the electrode manufacturing process from materials synthesis to electrode calendering. We also highlight the role of new process technology such as dry processing and advanced electrode design supported through electrode level, physics-based modelling. To compliment this, the progresses in data driven models of full manufacturing processes is reviewed. For all the processes we describe, there is a growing need process metrology, not only to aid fundamental understanding but also to enable true feedback control of the manufacturing process. It is our hope this roadmap will contribute to this rapidly growing space and provide guidance and inspiration to academia and industry

    Deformation and Breakage of Agglomerates: 3D Printing, Experiment and Numerical Analysis

    No full text
    My PhD research project entitled ā€œCreating tuneable agglomerates via 3D printingā€ is funded by International Fine Particle Research Institute (IFPRI) and Australia ARC Discovery grant. The original objective of this project is to develop a particulate system and experimental methodology to validate particle models. This research has demonstrated, for the first time, how new 3D printing technology can be used to bring ā€œin silicoā€ particles into the physical environment. This method can be widely adopted across the particle modelling community in future and lead to a step change in DEM model sophistication, accuracy and industrial utility

    Soil Texture Alters the Impact of Salinity on Carbon Mineralization

    No full text
    Soil salinization typically inhibits the ability of decomposer organisms to utilize soil organic matter, and an increase in soil clay content can mediate the negative effect of salinity on carbon (C) mineralization. However, the interactive effects of soil salt concentrations and properties on C mineralization remain uncertain. In this study, a laboratory experiment was performed to investigate the interactive effects of soil salt content (0.1%, 0.3%, 0.6% and 1.0%) and texture (sandy loam, sandy clay loam and silty clay soil with 6.0%, 23.9% and 40.6% clay content, respectively) on C mineralization and microbial community composition after cotton straw addition. With increasing soil salinity, carbon dioxide (CO2) emissions from the three soils decreased, but the effect of soil salinity on the decomposition of soil organic carbon varied with soil texture. Cumulative CO2 emissions in the coarse-textured (sandy loam and sandy clay loam) soils were more affected by salinity than those in the fine-textured (silty clay) soil. This difference was probably due to the differing responses of labile and resistant organic compounds to salinity across different soil texture. Increased salinity decreased the decomposition of the stable C pool in the coarse-textured soil, by reducing the proportion of fungi to bacteria, whereas it decreased the mineralization of the active C pool in the fine-textured soil through decreasing the Gram-positive bacterial population. Overall, our results suggest that soil texture controlled the negative effect of salinity on C mineralization through regulating the soil microbial community composition

    Status and outlook for lithium-ion battery cathode material synthesis and the application of mechanistic modeling

    No full text
    This work reviews different techniques available for the synthesis and modification of cathode active material (CAM) particles used in Li-ion batteries. The synthesis techniques are analyzed in terms of processes involved and product particle structure. The knowledge gap in the process-particle structure relationship is identified. Many of these processes are employed in other similar industries; hence, parallel insights and knowledge transfer can be applied to battery materials. Here, we discuss examples of applications of different mechanistic models outside the battery literature and identify similar potential applications for the synthesis of CAMs. We propose that the widespread implementation of such mechanistic models will increase the understanding of the process-particle structure relationship. Such understanding will provide better control over the CAM synthesis technique and open doors to the precise tailoring of product particle morphologies favorable for enhanced electrochemical performance
    corecore