8,175 research outputs found

    ROX Index to Guide Management of COVID-19 Pneumonia

    Get PDF
    Coronavirus disease 2019 (COVID-19) caused by novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged from China in December 2019 leading to a global pandemic (1). Approximately 17% of patients admitted to hospital require critical care, the majority of whom undergo mechanical ventilation (MV) for pneumonia complicated by hypoxaemia (2)

    Exome sequencing followed by large-scale genotyping suggests a limited role for moderately rare risk factors of strong effect in schizophrenia.

    Get PDF
    Schizophrenia is a severe psychiatric disorder with strong heritability and marked heterogeneity in symptoms, course, and treatment response. There is strong interest in identifying genetic risk factors that can help to elucidate the pathophysiology and that might result in the development of improved treatments. Linkage and genome-wide association studies (GWASs) suggest that the genetic basis of schizophrenia is heterogeneous. However, it remains unclear whether the underlying genetic variants are mostly moderately rare and can be identified by the genotyping of variants observed in sequenced cases in large follow-up cohorts or whether they will typically be much rarer and therefore more effectively identified by gene-based methods that seek to combine candidate variants. Here, we consider 166 persons who have schizophrenia or schizoaffective disorder and who have had either their genomes or their exomes sequenced to high coverage. From these data, we selected 5,155 variants that were further evaluated in an independent cohort of 2,617 cases and 1,800 controls. No single variant showed a study-wide significant association in the initial or follow-up cohorts. However, we identified a number of case-specific variants, some of which might be real risk factors for schizophrenia, and these can be readily interrogated in other data sets. Our results indicate that schizophrenia risk is unlikely to be predominantly influenced by variants just outside the range detectable by GWASs. Rather, multiple rarer genetic variants must contribute substantially to the predisposition to schizophrenia, suggesting that both very large sample sizes and gene-based association tests will be required for securely identifying genetic risk factors. © 2012 The American Society of Human Genetics

    Reach-scale bankfull channel types can exist independently of catchment hydrology

    Get PDF
    © 2020 John Wiley & Sons, Ltd. Reach-scale morphological channel classifications are underpinned by the theory that each channel type is related to an assemblage of reach- and catchment-scale hydrologic, topographic, and sediment supply drivers. However, the relative importance of each driver on reach morphology is unclear, as is the possibility that different driver assemblages yield the same reach morphology. Reach-scale classifications have never needed to be predicated on hydrology, yet hydrology controls discharge and thus sediment transport capacity. The scientific question is: do two or more regions with quantifiable differences in hydrologic setting end up with different reach-scale channel types, or do channel types transcend hydrologic setting because hydrologic setting is not a dominant control at the reach scale? This study answered this question by isolating hydrologic metrics as potential dominant controls of channel type. Three steps were applied in a large test basin with diverse hydrologic settings (Sacramento River, California) to: (1) create a reach-scale channel classification based on local site surveys, (2) categorize sites by flood magnitude, dimensionless flood magnitude, and annual hydrologic regime type, and (3) statistically analyze two hydrogeomorphic linkages. Statistical tests assessed the spatial distribution of channel types and the dependence of channel type morphological attributes by hydrologic setting. Results yielded 10 channel types. Nearly all types existed across all hydrologic settings, which is perhaps a surprising development for hydrogeomorphology. Downstream hydraulic geometry relationships were statistically significant. In addition, cobble-dominated uniform streams showed a consistent inverse relationship between slope and dimensionless flood magnitude, an indication of dynamic equilibrium between transport capacity and sediment supply. However, most morphological attributes showed no sorting by hydrologic setting. This study suggests that median hydraulic geometry relations persist across basins and within channel types, but hydrologic influence on geomorphic variability is likely due to local influences rather than catchment-scale drivers. © 2020 John Wiley & Sons, Ltd

    Using item response theory to explore the psychometric properties of extended matching questions examination in undergraduate medical education

    Get PDF
    BACKGROUND: As assessment has been shown to direct learning, it is critical that the examinations developed to test clinical competence in medical undergraduates are valid and reliable. The use of extended matching questions (EMQ) has been advocated to overcome some of the criticisms of using multiple-choice questions to test factual and applied knowledge. METHODS: We analysed the results from the Extended Matching Questions Examination taken by 4th year undergraduate medical students in the academic year 2001 to 2002. Rasch analysis was used to examine whether the set of questions used in the examination mapped on to a unidimensional scale, the degree of difficulty of questions within and between the various medical and surgical specialties and the pattern of responses within individual questions to assess the impact of the distractor options. RESULTS: Analysis of a subset of items and of the full examination demonstrated internal construct validity and the absence of bias on the majority of questions. Three main patterns of response selection were identified. CONCLUSION: Modern psychometric methods based upon the work of Rasch provide a useful approach to the calibration and analysis of EMQ undergraduate medical assessments. The approach allows for a formal test of the unidimensionality of the questions and thus the validity of the summed score. Given the metric calibration which follows fit to the model, it also allows for the establishment of items banks to facilitate continuity and equity in exam standards

    Quantum oscillations of nitrogen atoms in uranium nitride

    Full text link
    The vibrational excitations of crystalline solids corresponding to acoustic or optic one phonon modes appear as sharp features in measurements such as neutron spectroscopy. In contrast, many-phonon excitations generally produce a complicated, weak, and featureless response. Here we present time-of-flight neutron scattering measurements for the binary solid uranium nitride (UN), showing well-defined, equally-spaced, high energy vibrational modes in addition to the usual phonons. The spectrum is that of a single atom, isotropic quantum harmonic oscillator and characterizes independent motions of light nitrogen atoms, each found in an octahedral cage of heavy uranium atoms. This is an unexpected and beautiful experimental realization of one of the fundamental, exactly-solvable problems in quantum mechanics. There are also practical implications, as the oscillator modes must be accounted for in the design of generation IV nuclear reactors that plan to use UN as a fuel.Comment: 25 pages, 10 figures, submitted to Nature Communications, supplementary information adde

    High energy emission from microquasars

    Full text link
    The microquasar phenomenon is associated with the production of jets by X-ray binaries and, as such, may be associated with the majority of such systems. In this chapter we briefly outline the associations, definite, probable, possible, and speculative, between such jets and X-ray, gamma-ray and particle emission.Comment: Contributing chapter to the book Cosmic Gamma-Ray Sources, K.S. Cheng and G.E. Romero (eds.), to be published by Kluwer Academic Publishers, Dordrecht, 2004. (19 pages

    Attention-dependent modulation of cortical taste circuits revealed by granger causality with signal-dependent noise

    Get PDF
    We show, for the first time, that in cortical areas, for example the insular, orbitofrontal, and lateral prefrontal cortex, there is signal-dependent noise in the fMRI blood-oxygen level dependent (BOLD) time series, with the variance of the noise increasing approximately linearly with the square of the signal. Classical Granger causal models are based on autoregressive models with time invariant covariance structure, and thus do not take this signal-dependent noise into account. To address this limitation, here we describe a Granger causal model with signal-dependent noise, and a novel, likelihood ratio test for causal inferences. We apply this approach to the data from an fMRI study to investigate the source of the top-down attentional control of taste intensity and taste pleasantness processing. The Granger causality with signal-dependent noise analysis reveals effects not identified by classical Granger causal analysis. In particular, there is a top-down effect from the posterior lateral prefrontal cortex to the insular taste cortex during attention to intensity but not to pleasantness, and there is a top-down effect from the anterior and posterior lateral prefrontal cortex to the orbitofrontal cortex during attention to pleasantness but not to intensity. In addition, there is stronger forward effective connectivity from the insular taste cortex to the orbitofrontal cortex during attention to pleasantness than during attention to intensity. These findings indicate the importance of explicitly modeling signal-dependent noise in functional neuroimaging, and reveal some of the processes involved in a biased activation theory of selective attention

    Homozygosity for a missense mutation in the 67 kDa isoform of glutamate decarboxylase in a family with autosomal recessive spastic cerebral palsy: parallels with Stiff-Person Syndrome and other movement disorders

    Get PDF
    Background Cerebral palsy (CP) is an heterogeneous group of neurological disorders of movement and/or posture, with an estimated incidence of 1 in 1000 live births. Non-progressive forms of symmetrical, spastic CP have been identified, which show a Mendelian autosomal recessive pattern of inheritance. We recently described the mapping of a recessive spastic CP locus to a 5 cM chromosomal region located at 2q24-31.1, in rare consanguineous families. Methods Here we present data that refine this locus to a 0.5 cM region, flanked by the microsatellite markers D2S2345 and D2S326. The minimal region contains the candidate gene GAD1, which encodes a glutamate decarboxylase isoform (GAD67), involved in conversion of the amino acid and excitatory neurotransmitter glutamate to the inhibitory neurotransmitter γ-aminobutyric acid (GABA). Results A novel amino acid mis-sense mutation in GAD67 was detected, which segregated with CP in affected individuals. Conclusions This result is interesting because auto-antibodies to GAD67 and the more widely studied GAD65 homologue encoded by the GAD2 gene, are described in patients with Stiff-Person Syndrome (SPS), epilepsy, cerebellar ataxia and Batten disease. Further investigation seems merited of the possibility that variation in the GAD1 sequence, potentially affecting glutamate/GABA ratios, may underlie this form of spastic CP, given the presence of anti-GAD antibodies in SPS and the recognised excitotoxicity of glutamate in various contexts
    • …
    corecore