518 research outputs found
In vitro effect of hyperthermic Ag and Au Fe₃O₄ nanoparticles in cancer cells
PURPOSE: To investigate the anti-cancer efficacy of hyperthermic Ag and Au Fe3O4 core nanoparticles via cytotoxicity study (MTT assay) and the underlying molecular mechanism of action (changes in gene expression via quantitive real time PCR (qRT-PCR). METHODS: HEK293, HCT116, 4T1 and HUH7 human cell lines and 4T1 musculus mammary gland cell line were incubated with Fe3O4 core Ag(Au) shell nanoparticles (NPs) prior to a hyperthermia session. MTT assay was performed to estimate the cytotoxic effects of these NPs. RNA extraction and cDNA synthesis followed so as to quantify mRNA fold change of hsp-70, p53, bcl-2 and casp-3 via qRT-PCR. RESULTS: Fe3O4 core Au shell (concentrations of 400 and 600μg/mL) produced the greatest reduction of viability on HCT116 and 4T1 cells while Fe3O4 core Ag shell (200, 400 and 600μg/mL) reduce viability on HUH7 cells. Hsp-70, p53 and casp-3 were up-regulated while bcl-2 was downregulated in most cases. CONCLUSIONS: Fe3O4 core Ag (Au) shell induced apoptosis on cancer cells (HCT116 and HUH7) via the p53/bcl-2/casp-3 pathway. 4T1 cells also underwent apoptosis via a p53-independent pathway
Non-Ionic Surfactant Effects on Innate Pluronic 188 Behavior: Interactions, and Physicochemical and Biocompatibility Studies
The aim of this research was to prepare novel block copolymer-surfactant hybrid nanosystems using the triblock copolymer Pluronic 188, along with surfactants of different hydrophilic to lipophilic balance (HLB ratio—which indicates the degree to which a surfactant is hydrophilic or hydrophobic) and thermotropic behavior. The surfactants used were of non-ionic nature, of which Tween 80® and Brij 58® were more hydrophilic, while Span 40® and Span 60® were more hydrophobic. Each surfactant has unique innate thermal properties and an affinity towards Pluronic 188. The nanosystems were formulated through mixing the pluronic with the surfactants at three different ratios, namely 90:10, 80:20, and 50:50, using the thin-film hydration technique and keeping the pluronic concentration constant. The physicochemical characteristics of the prepared nanosystems were evaluated using various light scattering techniques, while their thermotropic behavior was characterized via microDSC and high-resolution ultrasound spectroscopy. Microenvironmental parameters were attained through the use of fluorescence spectroscopy, while the cytotoxicity of the nanocarriers was studied in vitro. The results indicate that the combination of Pluronic 188 with the above surfactants was able to produce hybrid homogeneous nanoparticle populations of adequately small diameters. The different surfactants had a clear effect on physicochemical parameters such as the size, hydrodynamic diameter, and polydispersity index of the final formulation. The mixing of surfactants with the pluronic clearly changed its thermotropic behavior and thermal transition temperature (Tm) and highlighted the specific interactions that occurred between the different materials, as well as the effect of increasing the surfactant concentration on inherent polymer characteristics and behavior. The formulated nanosystems were found to be mostly of minimal toxicity. The obtained results demonstrate that the thin-film hydration method can be used for the formulation of pluronic-surfactant hybrid nanoparticles, which in turn exhibit favorable characteristics in terms of their possible use in drug delivery applications. This investigation can be used as a road map for the selection of an appropriate nanosystem as a novel vehicle for drug delivery
Evaluación de aceitunas negras estilo griego utilizando salmueras de diferentes concentraciones
hree fermentation processes with black table-olives were tested. Olives were placed in: a) 16 %(w/v) concentration of NaCl, (traditional treatment), b) a buffer of CH3COOH (0.05M) and Ca(OH)2, (0.025M) without any NaCl and initial pH 4.7, and c) a buffer of CH3COOH (0.05M) and Ca(OH)2 (0.025M) containing 12.8 % (w/v) NaCl, and pH 4.3. Isolation, identification and enumeration of predominant microorganisms from fruits and brines sampled during the fermentation periods as well as color, intensity, texture and sensory evaluation tests of the final products were conducted. The third fermentation process, (c), yielded a product with low salt content no presence of spoilage microflora or other alterations during the fermentation period, with significantly better final texture and color, and higher acceptability among the consumers (PSe han ensayado tres procesos para la elaboración de aceitunas negras de mesa. Los frutos se colocaron en: a) una salmuera con una concentración de sal del 16 % (w/w), proceso tradicional; b) en una solución tampón compuesta de CH3COOH (0.05M) y Ca(OH)2 (0.025M) , sin NaCl y con un pH inicial de 4.3; c) una solución tampón compuesta de CH3COOH (0.05M) y Ca(OH)2 (0.025M),conteniendo 12.8 % (w/w) NaCl y un pH de 4.3. Se realizó el aislamiento, identificación y el recuento de los micoorganismos predominantes, tanto del fruto como de las salmueras, durante la fermentación. Asimismo, se estudió el color, textura y las características organolépticas de los productos finales. El tercer tipo de proceso fermentativo, tipo c, dio lugar a un producto con baja sal, ausencia de microorganismos alterantes o de cualquier otra alteración, dando una textura y un color significativamente mejor y resultando con una mayor aceptación entre los consumidores (
Fabricating Polymer/Surfactant/Cyclodextrin Hybrid Particles for Possible Nose-to-Brain Delivery of Ropinirole Hydrochloride: In Vitro and Ex Vivo Evaluation
Ropinirole is a non-ergolinic dopamine agonist used to manage Parkinson’s disease and it is characterized by poor oral bioavailability. This study aimed to design and develop advanced drug delivery systems composed of poloxamer 407, a non-ionic surfactant (Tween 80), and cyclodextrins (methyl-β-CD or hydroxy-propyl-β-CD) for possible brain targeting of ropinirole after nasal administration for the treatment of Parkinson’s disease. The hybrid systems were formed by the thin-film hydration method, followed by an extensive physicochemical and morphological characterization. The in vitro cytotoxicity of the systems on HEK293 cell lines was also tested. In vitro release and ex vivo mucosal permeation of ropinirole were assessed using Franz cells at 34 °C and with phosphate buffer solution at pH 5.6 in the donor compartment, simulating the conditions of the nasal cavity. The results indicated that the diffusion-controlled drug release exhibited a progressive increase throughout the experiment, while a proof-of-concept experiment on ex vivo permeation through rabbit nasal mucosa revealed a better performance of the prepared hybrid systems in comparison to ropinirole solution. The encouraging results in drug release and mucosal permeation indicate that these hybrid systems can serve as attractive platforms for effective and targeted nose-to-brain delivery of ropinirole with a possible application in Parkinson’s disease. Further ex vivo and in vivo studies to support the results of the present work are ongoing
Detection of Pathogenic Mycobacteria Based on Functionalized Quantum Dots Coupled with Immunomagnetic Separation
Mycobacteria have always proven difficult to identify due to their low growth rate and fastidious nature. Therefore molecular biology and more recently nanotechnology, have been exploited from early on for the detection of these pathogens. Here we present the first stage of development of an assay incorporating cadmium selenide quantum dots (QDs) for the detection of mycobacterial surface antigens. The principle of the assay is the separation of bacterial cells using magnetic beads coupled with genus-specific polyclonal antibodies and monoclonal antibodies for heparin-binding hemagglutinin. These complexes are then tagged with anti-mouse biotinylated antibody and finally streptavidin-conjugated QDs which leads to the detection of a fluorescent signal. For the evaluation of performance, the method under study was applied on Mycobacterium bovis BCG and Mycobacterium tuberculosis (positive controls), as well as E. coli and Salmonella spp. that constituted the negative controls. The direct observation of the latter category of samples did not reveal fluorescence as opposed to the mycobacteria mentioned above. The minimum detection limit of the assay was defined to 104 bacteria/ml, which could be further decreased by a 1 log when fluorescence was measured with a spectrofluorometer. The method described here can be easily adjusted for any other protein target of either the pathogen or the host, and once fully developed it will be directly applicable on clinical samples
Lessons learned - resolving the enigma of genetic factors in IBS
IBS is the most prevalent functional gastrointestinal disorder and phenotypically characterized by chronic abdominal discomfort, pain and altered defecation patterns. The pathophysiology of IBS is multifactorial, albeit with a substantial genetic component. To date, studies using various methodologies, ranging from family and twin studies to candidate gene approaches and genome-wide association studies, have identified several genetic variants in the context of IBS. Yet, despite enlarged sample sizes, increased statistical power and meta-analyses in the past 7 years, positive associations are still scarce and/or have not been reproduced. In addition, epigenetic and pharmacogenetic approaches remain in their infancy. A major hurdle is the lack of large homogenized case-control cohorts recruited according to standardized and harmonized criteria. The COST Action BM1106 GENIEUR (GENes in Irritable Bowel Syndrome Research Network EURope) has been established to address these obstacles. In this Review, the (epi)genetic working group of GENIEUR reports on the current state-of-the-art in the field, highlights fundamental flaws and pitfalls in current IBS (epi) genetic research and provides a vision on how to address and improve (epi) genetic approaches in this complex disorder in the future.This is the peer reviewed version of the paper: Gazouli, M., Wouters, M. M., Kapur-Pojskić, L., Bengtson, M.-B., Friedman, E., Nikčević, G., Demetriou, C. A., Mulak, A., Santos, J., & Niesler, B. (2016). Lessons learned—Resolving the enigma of genetic factors in IBS. Nature Reviews Gastroenterology & Hepatology, 13(2), 77–87. [https://doi.org/10.1038/nrgastro.2015.206]Published version: [https://imagine.imgge.bg.ac.rs/handle/123456789/977
Vascular conditioning prevents adverse left ventricular remodelling after acute myocardial infarction: a randomised remote conditioning study
Aims:
Remote ischemic conditioning (RIC) alleviates ischemia–reperfusion injury via several pathways, including micro-RNAs (miRs) expression and oxidative stress modulation. We investigated the effects of RIC on endothelial glycocalyx, arterial stiffness, LV remodelling, and the underlying mediators within the vasculature as a target for protection.
Methods and results:
We block-randomised 270 patients within 48 h of STEMI post-PCI to either one or two cycles of bilateral brachial cuff inflation, and a control group without RIC. We measured: (a) the perfusion boundary region (PBR) of the sublingual arterial microvessels to assess glycocalyx integrity; (b) the carotid-femoral pulse wave velocity (PWV); (c) miR-144,-150,-21,-208, nitrate-nitrite (NOx) and malondialdehyde (MDA) plasma levels at baseline (T0) and 40 min after RIC onset (T3); and (d) LV volumes at baseline and after one year. Compared to baseline, there was a greater PBR and PWV decrease, miR-144 and NOx levels increase (p 15% (odds-ratio of 3.75, p = 0.029). MiR-144 and PWV changes post-RIC were interrelated and associated with LVESV reduction at follow-up (r = 0.40 and 0.37, p < 0.05), in the single-cycle RIC.
Conclusion:
RIC evokes “vascular conditioning” likely by upregulation of cardio-protective microRNAs, NOx production, and oxidative stress reduction, facilitating reverse LV remodelling
Exploring the genetics of irritable bowel syndrome: A GWA study in the general population and replication in multinational case-control cohorts
OBJECTIVE:
IBS shows genetic predisposition, but adequately powered gene-hunting efforts have been scarce so far. We sought to identify true IBS genetic risk factors by means of genome-wide association (GWA) and independent replication studies.
DESIGN:
We conducted a GWA study (GWAS) of IBS in a general population sample of 11\u2005326 Swedish twins. IBS cases (N=534) and asymptomatic controls (N=4932) were identified based on questionnaire data. Suggestive association signals were followed-up in 3511 individuals from six case-control cohorts. We sought genotype-gene expression correlations through single nucleotide polymorphism (SNP)-expression quantitative trait loci interactions testing, and performed in silico prediction of gene function. We compared candidate gene expression by real-time qPCR in rectal mucosal biopsies of patients with IBS and controls.
RESULTS:
One locus at 7p22.1, which includes the genes KDELR2 (KDEL endoplasmic reticulum protein retention receptor 2) and GRID2IP (glutamate receptor, ionotropic, delta 2 (Grid2) interacting protein), showed consistent IBS risk effects in the index GWAS and all replication cohorts and reached p=9.31
710(-6) in a meta-analysis of all datasets. Several SNPs in this region are associated with cis effects on KDELR2 expression, and a trend for increased mucosal KDLER2 mRNA expression was observed in IBS cases compared with controls.
CONCLUSIONS:
Our results demonstrate that general population-based studies combined with analyses of patient cohorts provide good opportunities for gene discovery in IBS. The 7p22.1 and other risk signals detected in this study constitute a good starting platform for hypothesis testing in future functional investigations.
Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions
- …