3,521 research outputs found

    A Gas Leak Rate Measurement System for the ATLAS MUON BIS-Monitored Drift Tubes

    Get PDF
    A low-cost, reliable and precise system developed for the gas leak rate measurement of the BIS-Monitored Drift Tubes (MDTs) for the ATLAS Muon Spectrometer is presented. In order to meet the BIS-MDT mass production rate, a total number of 100 tubes are tested simultaneously in this setup. The pressure drop of each one of the MDT is measured, within a typical time interval of 48 hours, via a differential manometer comparing with the pressure of a gas tight reference tube. The precision of the method implemented is based on the system temperature homogeneity, with accuracy of ÄT = 0.3 oC. For this reason, two thermally isolated boxes are used testing 50 tubes each of them, to achieve high degree of temperature uniformity and stability. After measuring several thousands of the MDTs, the developed system is confirmed to be appropriate within the specifications for testing the MDTs during the mass production

    Macroscopic traffic models from microscopic car-following models

    Full text link
    We present a method to derive macroscopic fluid-dynamic models from microscopic car-following models via a coarse-graining procedure. The method is first demonstrated for the optimal velocity model. The derived macroscopic model consists of a conservation equation and a momentum equation, and the latter contains a relaxation term, an anticipation term, and a diffusion term. Properties of the resulting macroscopic model are compared with those of the optimal velocity model through numerical simulations, and reasonable agreement is found although there are deviations in the quantitative level. The derivation is also extended to general car-following models.Comment: 12 pages, 4 figures; to appear in Phys. Rev.

    Deterministic approach to microscopic three-phase traffic theory

    Full text link
    Two different deterministic microscopic traffic flow models, which are in the context of the Kerner's there-phase traffic theory, are introduced. In an acceleration time delay model (ATD-model), different time delays in driver acceleration associated with driver behaviour in various local driving situations are explicitly incorporated into the model. Vehicle acceleration depends on local traffic situation, i.e., whether a driver is within the free flow, or synchronized flow, or else wide moving jam traffic phase. In a speed adaptation model (SA-model), vehicle speed adaptation occurs in synchronized flow depending on driving conditions. It is found that the ATD- and SA-models show spatiotemporal congested traffic patterns that are adequate with empirical results. In the ATD- and SA-models, the onset of congestion in free flow at a freeway bottleneck is associated with a first-order phase transition from free flow to synchronized flow; moving jams emerge spontaneously in synchronized flow only. Differences between the ATD- and SA-models are studied. A comparison of the ATD- and SA-models with stochastic models in the context of three phase traffic theory is made. A critical discussion of earlier traffic flow theories and models based on the fundamental diagram approach is presented.Comment: 40 pages, 14 figure

    New solar axion search in CAST with 4^4He filling

    Get PDF
    The CERN Axion Solar Telescope (CAST) searches for a→γa\to\gamma conversion in the 9 T magnetic field of a refurbished LHC test magnet that can be directed toward the Sun. Two parallel magnet bores can be filled with helium of adjustable pressure to match the X-ray refractive mass mÎłm_\gamma to the axion search mass mam_a. After the vacuum phase (2003--2004), which is optimal for maâ‰Č0.02m_a\lesssim0.02 eV, we used 4^4He in 2005--2007 to cover the mass range of 0.02--0.39 eV and 3^3He in 2009--2011 to scan from 0.39--1.17 eV. After improving the detectors and shielding, we returned to 4^4He in 2012 to investigate a narrow mam_a range around 0.2 eV ("candidate setting" of our earlier search) and 0.39--0.42 eV, the upper axion mass range reachable with 4^4He, to "cross the axion line" for the KSVZ model. We have improved the limit on the axion-photon coupling to gaÎł<1.47×10−10GeV−1g_{a\gamma}< 1.47\times10^{-10} {\rm GeV}^{-1} (95% C.L.), depending on the pressure settings. Since 2013, we have returned to vacuum and aim for a significant increase in sensitivity.Comment: CAST Collaboration 6 pages 3 figure

    CAST solar axion search with 3^He buffer gas: Closing the hot dark matter gap

    Get PDF
    The CERN Axion Solar Telescope (CAST) has finished its search for solar axions with 3^He buffer gas, covering the search range 0.64 eV < m_a <1.17 eV. This closes the gap to the cosmological hot dark matter limit and actually overlaps with it. From the absence of excess X-rays when the magnet was pointing to the Sun we set a typical upper limit on the axion-photon coupling of g_ag < 3.3 x 10^{-10} GeV^{-1} at 95% CL, with the exact value depending on the pressure setting. Future direct solar axion searches will focus on increasing the sensitivity to smaller values of g_a, for example by the currently discussed next generation helioscope IAXO.Comment: 5 pages, 2 figures. Last version uploade

    Observations of the geology and geomorphology of the 1999 Marsokhod test site

    Get PDF
    The Marsokhod rover returned data from six stations that were used to decipher the geomorphology and geology of a region not previously visited by members of the geomorphology field team. Satellite images and simulated descent images provided information about the regional setting. The landing zone was on an alluvial apron flanking a mountain block to the west and playa surface to the east. Rover color images, infrared spectra analysis of the mountains, and the apron surface provided insight into the rock composition of the nearby mountains. From the return data the geomorphology team interpreted the region to consist of compressionally deformed, ancient marine sediments and igneous rocks exposed by more recent extensional tectonics. Unconsolidated alluvial materials blanket the lower flanks of the mountains. An ancient shoreline cut into alluvial material marks a high stand of water during a past, wetter climate period. Playa sediments floor a present-day, seasonally, dry lake. Observations made by the rover using panoramic and close-up (hand specimens—scale) image data and color scene data confirmed the presence of boulders, cobbles, and fines of various provinces. Rover traverses to sites identified as geologically distinct, such as a fan, channel, shoreline, and playa, provided useful clues to the geologic interpretations. Analysis of local rocks was given context only through comparison with distant geologic features. These results demonstrated the importance of a multifaceted approach to site interpretation through comparison of interpretations derived by differing geologic techniques

    Solar axion search with the CAST experiment

    Get PDF
    The CAST (CERN Axion Solar Telescope) experiment is searching for solar axions by their conversion into photons inside the magnet pipe of an LHC dipole. The analysis of the data recorded during the first phase of the experiment with vacuum in the magnet pipes has resulted in the most restrictive experimental limit on the coupling constant of axions to photons. In the second phase, CAST is operating with a buffer gas inside the magnet pipes in order to extent the sensitivity of the experiment to higher axion masses. We will present the first results on the 4He^{4}{\rm He} data taking as well as the system upgrades that have been operated in the last year in order to adapt the experiment for the 3He^{3}{\rm He} data taking. Expected sensitivities on the coupling constant of axions to photons will be given for the recent 3He^{3}{\rm He} run just started in March 2008.Comment: Proceedings of the ICHEP 2008 conferenc

    Search for chameleons with CAST

    Get PDF
    In this work we present a search for (solar) chameleons with the CERN Axion Solar Telescope (CAST). This novel experimental technique, in the field of dark energy research, exploits both the chameleon coupling to matter (ÎČm\beta_{\rm m}) and to photons (ÎČÎł\beta_{\gamma}) via the Primakoff effect. By reducing the X-ray detection energy threshold used for axions from 1 \,keV to 400 \,eV CAST became sensitive to the converted solar chameleon spectrum which peaks around 600 \,eV. Even though we have not observed any excess above background, we can provide a 95% C.L. limit for the coupling strength of chameleons to photons of ÎČγ ⁣â‰Č ⁣1011\beta_{\gamma}\!\lesssim\!10^{11} for 1<ÎČm<1061<\beta_{\rm m}<10^6.Comment: 8 pages, 12 figure
    • 

    corecore