35 research outputs found

    Calcium signaling in a low calcium environment: how the intracellular malaria parasite solves the problem

    Get PDF
    Malaria parasites, Plasmodia, spend most of their asexual life cycle within red blood cells, where they proliferate and mature. The erythrocyte cytoplasm has very low [Ca2+] (<100 nM), which is very different from the extracellular environment encountered by most eukaryotic cells. The absence of extracellular Ca2+ is usually incompatible with normal cell functions and survival. In the present work, we have tested the possibility that Plasmodia overcome the limitation posed by the erythrocyte intracellular environment through the maintenance of a high [Ca2+] within the parasitophorous vacuole (PV), the compartment formed during invasion and within which the parasites grow and divide. Thus, Plasmodia were allowed to invade erythrocytes in the presence of Ca2+ indicator dyes. This allowed selective loading of the Ca2+ probes within the PV. The [Ca2+] within this compartment was found to be ∼40 μM, i.e., high enough to be compatible with a normal loading of the Plasmodia intracellular Ca2+ stores, a prerequisite for the use of a Ca2+-based signaling mechanism. We also show that reduction of extracellular [Ca2+] results in a slow depletion of the [Ca2+] within the PV. A transient drop of [Ca2+] in the PV for a period as short as 2 h affects the maturation process of the parasites within the erythrocytes, with a major reduction 48 h later in the percentage of schizonts, the form that re-invades the red blood cells

    drug interactions and implications on the ubiquitin/proteasome system

    Get PDF
    Antimalarial drug resistance remains a major obstacle in malaria control. Evidence from Southeast Asia shows that resistance to artemisinin combination therapy (ACT) is inevitable. Ethnopharmacological studies have confirmed the efficacy of curcumin against Plasmodium spp. Drug interaction assays between curcumin/piperine/chloroquine and curcumin/piperine/artemisinin combinations and the potential of drug treatment to interfere with the ubiquitin proteasome system (UPS) were analyzed. In vivo efficacy of curcumin was studied in BALB/c mice infected with Plasmodium chabaudi clones resistant to chloroquine and artemisinin, and drug interactions were analyzed by isobolograms. Subtherapeutic doses of curcumin, chloroquine, and artemisinin were administered to mice, and mRNA was collected following treatment for RT-PCR analysis of genes encoding deubiquitylating enzymes (DUBs). Curcumin was found be nontoxic in BALB/c mice. The combination of curcumin/chloroquine/piperine reduced parasitemia to 37% seven days after treatment versus the control group's 65%, and an additive interaction was revealed. Curcumin/piperine/artemisinin combination did not show a favorable drug interaction in this murine model of malaria. Treatment of mice with subtherapeutic doses of the drugs resulted in a transient increase in genes encoding DUBs indicating UPS interference. If curcumin is to join the arsenal of available antimalarial drugs, future studies exploring suitable drug partners would be of interest.publishersversionpublishe

    Sleep deprivation impairs calcium signaling in mouse splenocytes and leads to a decreased immune response

    Get PDF
    Background: Sleep is a physiological event that directly influences health by affecting the immune system, in which calcium (Ca2+) plays a critical signaling role. We performed live cell measurements of cytosolic Ca2+ mobilization to understand the changes in Ca2+ signaling that occur in splenic immune cells after various periods of sleep deprivation (SD).Methods: Adult male mice were subjected to sleep deprivation by platform technique for different periods (from 12 to 72 h) and Ca2+ intracellular fluctuations were evaluated in splenocytes by confocal microscopy. We also performed spleen cell evaluation by flow cytometry and analyzed intracellular Ca2+ mobilization in endoplasmic reticulum and mitochondria. Additionally. Ca2+ channel gene expression was evaluatedResults: Splenocytes showed a progressive loss of intracellular Ca2+ maintenance from endoplasmic reticulum (ER) stores. Transient Ca2+ buffering by the mitochondria was further compromised. These findings were confirmed by changes in mitochondrial integrity and in the performance of the store operated calcium entry (SOCE) and stromal interaction molecule 1 (STIM1) Ca2+ channels.Conclusions and general significance: These novel data suggest that SD impairs Ca2+ signaling, most likely as a result of ER stress, leading to an insufficient Ca2+ supply for signaling events. Our results support the previously described immunosuppressive effects of sleep loss and provide additional information on the cellular and molecular mechanisms involved in sleep function. (C) 2012 Elsevier B.V. All rights reserved.AFIP (Associacao Fundo de Incentivo a Pesquisa)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Universidade Federal de São Paulo UNIFESP, Dept Psychobiol, São Paulo, BrazilUniversidade Federal de São Paulo UNIFESP, Dept Biosci, Santos, SP, BrazilUniversidade Federal de São Paulo UNIFESP, Dept Biochem, São Paulo, BrazilUniversidade Federal de São Paulo UNIFESP, Dept Psychobiol, São Paulo, BrazilUniversidade Federal de São Paulo UNIFESP, Dept Biosci, Santos, SP, BrazilUniversidade Federal de São Paulo UNIFESP, Dept Biochem, São Paulo, BrazilFAPESP: 05/04366-3FAPESP: CEPID 98/14303-6Web of Scienc

    Treatment of Plasmodium chabaudi

    Get PDF
    Antimalarial drug resistance remains a major obstacle in malaria control. Evidence from Southeast Asia shows that resistance to artemisinin combination therapy (ACT) is inevitable. Ethnopharmacological studies have confirmed the efficacy of curcumin against Plasmodium spp. Drug interaction assays between curcumin/piperine/chloroquine and curcumin/piperine/artemisinin combinations and the potential of drug treatment to interfere with the ubiquitin proteasome system (UPS) were analyzed. In vivo efficacy of curcumin was studied in BALB/c mice infected with Plasmodium chabaudi clones resistant to chloroquine and artemisinin, and drug interactions were analyzed by isobolograms. Subtherapeutic doses of curcumin, chloroquine, and artemisinin were administered to mice, and mRNA was collected following treatment for RT-PCR analysis of genes encoding deubiquitylating enzymes (DUBs). Curcumin was found be nontoxic in BALB/c mice. The combination of curcumin/chloroquine/piperine reduced parasitemia to 37% seven days after treatment versus the control group’s 65%, and an additive interaction was revealed. Curcumin/piperine/artemisinin combination did not show a favorable drug interaction in this murine model of malaria. Treatment of mice with subtherapeutic doses of the drugs resulted in a transient increase in genes encoding DUBs indicating UPS interference. If curcumin is to join the arsenal of available antimalarial drugs, future studies exploring suitable drug partners would be of interest

    Antimalarial drugs disrupt ion homeostasis in malarial parasites

    No full text
    Plasmodium chabaudi malaria parasite organelles are major elements for ion homeostasis and cellular signaling and also target for antimalarial drugs. By using confocal imaging of intraerythrocytic parasites we demonstrated that the dye acridine orange (AO) is accumulated into P. chabaudi subcellular compartments. The AO could be released from the parasite organelles by collapsing the pH gradient with the K+/H+ ionophore nigericin (20 μM), or by inhibiting the H+-pump with bafilomycin (4 μM). Similarly, in isolated parasites loaded with calcium indicator Fluo 3-AM, bafilomycin caused calcium mobilization of the acidic calcium pool that could also be release with nigericin. Interestingly after complete release of the acidic compartments, addition of thapsigargin at 10 μM was still effective in releasing parasite intracellular calcium stores in parasites at trophozoite stage. The addition of antimalarial drugs chloroquine and artemisinin resulted in AO release from acidic compartments and also affected maintenance of calcium in ER store by using different drug concentrations
    corecore