20 research outputs found

    Potential Greenhouse Gas Mitigation for Converting High Moisture Food Waste into Bio-Coal from Hydrothermal Carbonisation in India, Europe and China

    Get PDF
    Hydrothermal carbonisation is a promising technology for greenhouse gas (GHG) mitigation through landfill avoidance and power generation, as it can convert high-moisture wastes into bio-coal which can be used for coal substitution. The GHG mitigation potential associated with landfill avoidance of high-moisture food waste (FW) generated in India, China and the EU was calculated and the potential for coal substitution to replace either grid energy, hard coal, or lignite consumption were determined. Different HTC processing conditions were evaluated including temperature and residence times and their effect on energy consumption and energy recovery. The greatest mitigation potential was observed at lower HTC temperatures and shorter residence times with the bio-coal replacing lignite. China had the greatest total mitigation potential (194 MT CO2 eq), whereas India had the greatest mitigation per kg of FW (1.2 kgCO2/kg FW). Significant proportions of overall lignite consumption could be substituted in India (12.4%) and China (7.1%), while sizable levels of methane could be mitigated in India (12.5%), China (19.3%), and the EU (7.2%). GHG savings from conversion of high-moisture FW into bio-coal and subsequent coal replacement has significant potential for reducing total GHG emissions and represents in India (3%), China (2.4%), and the EU (1%)

    A cotton miRNA is involved in regulation of plant response to salt stress

    Get PDF
    The present study functionally identified a new microRNA (microRNA ovual line 5, miRNVL5) with its target gene GhCHR from cotton (Gossypium hirsutum). The sequence of miRNVL5 precursor is 104 nt long, with a well developed secondary structure. GhCHR contains two DC1 and three PHD Cys/His-rich domains, suggesting that GhCHR encodes a zinc-finger domain-containing transcription factor. miRNVL5 and GhCHR express at various developmental stages of cotton. Under salt stress (50–400 mM NaCl), miRNVL5 expression was repressed, with concomitant high expression of GhCHR in cotton seedlings. Ectopic expression of GhCHR in Arabidopsis conferred salt stress tolerance by reducing Na+ accumulation in plants and improving primary root growth and biomass. Interestingly, Arabidopsis constitutively expressing miRNVL5 showed hypersensitivity to salt stress. A GhCHR orthorlous gene At2g44380 from Arabidopsis that can be cleaved by miRNVL5 was identified by degradome sequencing, but no confidential miRNVL5 homologs in Arabidopsis have been identified. Microarray analysis of miRNVL5 transgenic Arabidopsis showed six downstream genes (CBF1, CBF2, CBF3, ERF4, AT3G22920, and AT3G49200), which were induced by salt stress in wild-type but repressed in miRNVL5-expressing Arabidopsis. These results indicate that miRNVL5 is involved in regulation of plant response to salt stress

    Clinical manifestations and immunodiagnosis of Gnathostomiasis in Culiacan, Mexico

    No full text
    Gnathostomiasis was first described in Mexico in 1970, and endemic areas have been spreading in six states of this country. In Culiacan, Sinaloa, 300 cases of cutaneous larva migrans were recorded between January 1992 and December 1995. In addition, a Gnathostoma larva was surgically removed from the eye of one patient. Cutaneous lesions were observed mainly on the face, neck, arms, and legs. About 70% of the patients showed eosinophilia. A skin biopsy was carried out on 35 patients and the parasite was identified in histopathologic sections of 12 of these patients. In four patients, the larva migrated out spontaneously from the skin. An enzyme-linked immunosorbent assay using a crude somatic extract of adult Gnathostoma doloresi worms showed that 93% of the patients were seropositive, confirming the reliability of clinical diagnosis. A total of 14 advanced third-stage Gnathostoma larvae were found in four species of ichthyophagous birds captured on dams and dikes near the city of Culiacan. Scanning electron micrographs of human and bird larvae showed that they were morphologically indistinguishable from G. spinigerum. We conclude that the life cycle of Gnathostoma has been established in Sinaloa, and has become a serious public health issue for residents

    Genetic analysis of Na+ and K+ concentrations in leaf and stem as physiological components of salt tolerance in Tomato

    No full text
    International audienceThe sodium and potassium concentrations in leaf and stem have been genetically studied as physiological components of the vegetative and reproductive development in two populations of F 8 lines, derived from a salt sensitive genotype of Solanum lycopersicum cv. Cerasi-forme, as female parent, and two salt tolerant lines, as male parents, from S. pimpinellifolium, the P population (142 lines), and S. cheesmaniae, the C population (116 lines). Genetic parameters of ten traits under salinity and Wve of them under control conditions were studied by ANOVA, correlation, principal component and QTL analysis to understand the global response of the plant. Two linkage maps including some tomato Xowering time and salt tolerance candidate genes encoding for SlSOS1, SlSOS2, SlSOS3, LeNHX1, LeNHX3, were used for the QTL detection. Thirteen and 20 QTLs were detected under salinity in the P and C populations, respectively, and four under control conditions. Highly signiWcant and contributing QTLs (over 40%) for the concentrations of Na + and K + in stems and leaves have been detected on chromosome 7 in both the populations. This is the only genomic position where the concentration QTLs for both the cations locate together. The proportion of QTLs signiWcantly aVected by salinity was larger in the P population (64.3%, including all QTLs detected under control) than in the C population (21.4%), where the estimated genetic component of variance was larger for most traits. A highly signiWcant association between the leaf area and fruit yield under salinity was found only in the C population, which is supported by the location of QTLs for these traits in a common region of chromososome C1. As far as breeding for salt tolerance is concerned, only two sodium QTLs (lnc1.1 and lnc8.1) map in genomic regions of C1 and C8 where fruit yield QTLs are also located but in both the cases the proWtable allele corresponds to the salt sensitive, cultivated species. One of those QTLs, lnc1.1 might involve LeNHX3
    corecore