136 research outputs found

    Medical Anthropology in Poland

    Get PDF

    Habitat restoration and the recovery of metacommunities

    Full text link
    Ecosystem restoration is becoming a widely recognised solution to the biodiversity crisis. However, there is still a gap between restoration science and practice. Specifically, we lack a theoretical framework which would improve our understanding of ecosystems’ recovery and allow us to optimise restoration design. Here, we narrow this gap by developing spatially-explicit metacommunity models and studying the recovery dynamics of communities during restoration. We show that community response depends on how damaged the landscape is prior to restoration, with highly fragmented landscapes imposing greater challenges to community recovery. In such cases, recovery depends on the type of interaction and the structure of the interaction network. Furthermore, we demonstrate that community recovery can be maximised with careful spatial planning. Specifically, when recovering communities composed of antagonistic interactions, restoration should target areas adjacent to the most species-rich sites. In the case of mutualistic communities, the same strategy should be adopted in the short-term, whereas in the long-term, restoration should be extended to sites that improve the overall connectivity of the landscape. Synthesis and applications: Our results highlight the importance of considering interactions between species and spatial planning in restoration projects. Moreover, they provide insights into improving the efficiency of restoration, and thus can help guide the design of restoration projects

    The Role of Indirect Effects in Coevolution along the Mutualism-Antagonism Continuum

    Get PDF
    The web of interactions in a community drives the coevolution of species. Yet it is unclear how the outcome of species interactions influences the coevolutionary dynamics of communities. This is a pressing matter, as changes to the outcome of interactions may become more common with human-induced global change. Here, we combine network and evolutionary theory to explore coevolutionary outcomes in communities harboring mutualistic and antagonistic interactions. We show that as the ratio of mutualistic to antagonistic interactions decreases, selection imposed by direct partners outweighs that imposed by indirect partners. This weakening of indirect effects results in communities composed of species with dissimilar traits and fast rates of adaptation. These changes are more pronounced when specialist consumers are the first species to engage in antagonistic interactions. Hence, a shift in the outcome of species interactions may reverberate across communities and alter the direction and speed of coevolution

    An alternative coupled thermo-hydro-mechanical finite element formulation for fully saturated soils

    Get PDF
    Accounting for interaction of the soil’s constituents due to temperature change in the design of geo-thermal infrastructure requires numerical algorithms capable of reproducing the coupled thermo-hydro-mechanical (THM) behaviour of soils. This paper proposes a fully coupled and robust THM formulation for fully saturated soils, developed and implemented into a bespoke finite element code. The flexibility of the proposed formulation allows the effect of some coupling components, which are often ignored in existing formulations, to be examined. It is further demonstrated that the proposed formulation recovers accurately thermally induced excess pore water pressures observed in undrained heating tests

    Numerical analysis of coupled thermo-hydraulic problems in geotechnical engineering

    No full text
    © 2016 Elsevier Ltd.Ground source energy systems, such as open-loop systems, have been widely employed in recent years due to their economic and environmental benefits compared to conventional heating and cooling systems. Numerical modelling of such geothermal system requires solving a coupled thermo-hydraulic problem characterised by a convection-dominated heat transfer which can be challenging for the Galerkin finite element method (GFEM). This paper first presents the coupled thermo-hydraulic governing formulation as well as the coupled thermo-hydraulic boundary condition, which can be implemented into a finite element software. Subsequently, the stability condition of the adopted time marching scheme for coupled thermo-hydraulic analysis is established analytically. The behaviour of highly convective problems is then investigated via a series of analyses where convective heat transfer along a soil bar is simulated, with recommendations on the choice of an adequate discretisation with different boundary conditions being provided to avoid oscillatory solutions. Finally, the conclusions from the analytical and numerical studies are applied to the simulation of a boundary value problem involving an open-loop system, with the results showing good agreement with an approximate solution. The main objective of this paper is to demonstrate that the GFEM is capable of dealing with highly convective geotechnical problems

    A coupled thermo-hydro-mechanical finite element formulation of one-dimensional beam elements for three-dimensional analysis

    Get PDF
    Finite element (FE) analysis in geotechnical engineering often involves entities which can be represented as one-dimensional elements in three-dimensions (e.g. structural components, drains, heat exchanger pipes). Although structural components require an FE formulation accounting only for their mechanical behaviour, for the latter two examples, a coupled approach is necessary. This paper presents the first complete coupled thermo-hydro-mechanical FE formulation for one-dimensional beam elements for three-dimensional analysis. The possibility of deactivating each of the systems enables simulation of both coupled and uncoupled behaviour, and hence a range of engineering problems. The performance of these elements is demonstrated through various numerical simulations

    Finite element modelling of heat transfer in ground source energy systems with heat exchanger pipes

    Get PDF
    Ground source energy systems (GSES) utilise low enthalpy geothermal energy and have been recognised as an efficient means of providing low carbon space heating and cooling. This study focuses on GSES where the exchange of heat between the ground and the building is achieved by circulating a fluid through heat exchanger pipes. Although numerical analysis is a powerful tool for exploring the performance of such systems, simulating the highly advective flows inside the heat exchanger pipes can be problematic. This paper presents an efficient approach for modelling these systems using the finite element method (FEM). The pipes are discretised with line elements and the conductive-advective heat flux along them is solved using the Petrov-Galerkin FEM instead of the conventional Galerkin FEM. Following extensive numerical studies, a modelling approach for simulating heat exchanger pipes, which employs line elements and a special material with enhanced thermal properties, is developed. The modelling approach is then adopted in three-dimensional simulations of two thermal response tests, with an excellent match between the computed and measured temperatures being obtained

    Predictive modelling of thermo-active tunnels in London Clay

    Get PDF
    Thermo-active structures are underground facilities which enable the exchange of thermal energy between the ground and the overlying buildings, thus providing renewable means of space heating and cooling. Although this technology is becoming increasingly popular, the behaviour of geotechnical structures under additional thermal loading is still not fully understood. This paper focuses on the use of underground tunnels as thermo-active structures and explains their behaviour through a series of finite element analyses based on an existing case study of isothermal tunnels in London Clay. The bespoke finite element codeI CFEP is adopted which is capable of simulating the fully coupled thermo-hydro-mechanical behaviour of porous materials. The complex coupled interactions between the tunnel and the surrounding soil are explored bycomparing results from selected types of coupledand uncoupled simulations. It is demonstratedthat: (1) the thermally-induceddeformation of the tunnel and the ground are more critical design aspects than the thermally-induced forces in the tunnel lining, and (2) the modelling approach in terms of the type of analysis, as well as the assumed permeability of the tunnel lining, have a significant effect on the computed tunnel response and,hence, must be chosen carefull

    Investigations on numerical analysis of coupled thermo-hydraulic problems in geotechnical engineering

    Get PDF
    • …
    corecore