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A B S T R A C T

Finite element (FE) analysis in geotechnical engineering often involves entities which can be represented as one-
dimensional elements in three-dimensions (e.g. structural components, drains, heat exchanger pipes). Although
structural components require an FE formulation accounting only for their mechanical behaviour, for the latter
two examples, a coupled approach is necessary. This paper presents the first complete coupled thermo-hydro-
mechanical FE formulation for one-dimensional beam elements for three-dimensional analysis. The possibility of
deactivating each of the systems enables simulation of both coupled and uncoupled behaviour, and hence a
range of engineering problems. The performance of these elements is demonstrated through various numerical
simulations.

1. Introduction

Many geotechnical problems involve structural components such as
retaining walls, tunnel linings, anchors, props, etc. which must be in-
cluded in the finite element (FE) analysis. Although these components
can be represented by continuum finite elements, this approach may
result in a large number of elements increasing the computational ef-
fort, or in elements with unacceptable aspect ratios due to their geo-
metries. Instead, they can be modelled using specific finite elements
which are formulated by reducing one or more dimensions of the
structural component to zero, and hence represent it as a line or a
surface with zero thickness [1].

This study focuses on structural components that can be modelled as
line (i.e. one-dimensional) elements in three-dimensional (3D) analysis.
Examples of such components include anchors, props, beams, columns,
piles, sand columns as well as drains. Moreover, the recent increase in
the use of systems that utilise geothermal energy (i.e. ground source
energy systems) has created the need for accurate prediction of the
temperature field in the ground. This requires the inclusion in the nu-
merical model of the heat exchanger pipes through which a fluid is
circulated facilitating the transfer of thermal energy between the
building and the ground. Due to their small diameters, they can also be
represented as one-dimensional elements in 3D. Clearly, in the case of
structural elements such as anchors, props, beams or columns, their
mechanical behaviour is of interest to geotechnical engineers, and

therefore, the FE analysis must solve the force equilibrium equations.
However, in order to model drains or sand columns, a coupled hydro-
mechanical (HM) FE formulation is required, whereas a coupled
thermo-hydraulic (TH) formulation is necessary for heat exchanger
pipes. Furthermore, thermal drains, which have been shown to enhance
the consolidation rates in soft soils by imposing high temperatures (e.g.
[2,3]), require the solution of coupled thermo-hydro-mechanical
equations (THM). It should be highlighted that in all the above ex-
amples, the one-dimensional elements are used within a soil mass si-
mulated using 3D solid elements.

The FE software PLAXIS 3D [4] uses one-dimensional elements,
referred to as beam elements, for modelling structural components in
3D. These are 3-noded elements with five degrees of freedom per node,
i.e. three displacements (one axial and two transverse) and two rota-
tions. As the rotation degree of freedom around the element’s axis is not
considered, these beams cannot sustain torsional moments. One-di-
mensional beam elements with an additional rotational degree of
freedom, which allows for torsion, are available in the FE programs
ABAQUS [5] and CRISP [6]. Moreover, one-dimensional elements (re-
ferred to as truss elements in ABAQUS and bar elements in CRISP),
which have only displacement degrees of freedom, and hence, transmit
only axial forces, have also been developed. However, it should be
noted that these FE formulations are purely mechanical, and therefore,
the one-dimensional elements cannot be used in problems where their
thermal or hydraulic behaviour is important.
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In order to model drains, Hird et al. [7] and Russell [8] developed a
3-noded line drainage element for use in plane strain and axisymmetric
consolidation analysis in CRISP. However, as this element has a zero
cross-sectional area, it is unclear whether its use can be extended to the
modelling of the mechanical behaviour of structural components. Fur-
thermore, the element cannot simulate the fully coupled HM behaviour
as the off-diagonal coupling terms in this HM formulation are zero.
Finally, the formulation has not been extended for 3D analysis. In
PLAXIS, drains are simulated using a seepage boundary which permits
water to leave the mesh at atmospheric pressure [4].

The conductive-advective flows in heat exchanger pipes (i.e. cou-
pled TH problems) have been simulated in 3D with COMSOL
Multiphysics (e.g. [9–11]) using a pipe interface which solves the
continuity, fluid momentum and energy balance equations [12].
However, to the authors’ knowledge, the coupled THM FE formulation
of one-dimensional elements in 3D analysis has not been developed.

This paper presents a complete fully coupled THM FE formulation of
one-dimensional beam elements for 3D analysis which has been im-
plemented into the bespoke FE software – the Imperial College Finite
Element Program (ICFEP, Potts and Zdravković [1]). The elements may
be either 2- or 3-noded with each node possessing several degrees of
freedom: three displacements, three rotations, as well as pore fluid
pressure and temperature. The mechanical formulation of these new
elements is based on that for Mindlin’s beam elements for two-dimen-
sional (2D) analysis developed by Day and Potts [13] which has been
shown to be valid for both straight and the more problematic curved
beams. As the extension of this formulation to 3D involves additional
displacement and rotation degrees of freedom, the new beam elements
can transmit axial and shear forces, as well as bending and torsional
moments. The coupled THM formulation is based on that for continuum
elements presented by Cui et al. [14], and therefore, is compatible with
other finite element types in ICFEP, allowing modelling of the inter-
actions between the one-dimensional elements and other structural
components and/or the surrounding medium. Additionally, in order to
overcome problems associated with modelling of highly advective
flows, a Petrov-Galerkin finite element method (FEM) instead of the
Galerkin FEM may be used when advection dominates heat transfer
along the element. It should be noted that any of the three systems of
the coupled THM formulation (i.e. mechanical, hydraulic and thermal)
may be disabled such that the beam elements can be used in a variety of
problems involving coupled HM, TH or TM, or uncoupled mechanical,
hydraulic or thermal behaviour. To demonstrate the performance of the
new one-dimensional beam elements, a series of validation exercises is
presented in this paper. Finally, it should be noted that one-dimensional
bar elements have also been developed, although, as they differ from
beam elements only in terms of their mechanical behaviour, their for-
mulation is presented briefly in Appendix A. The sign convention
adopted throughout this paper is such that tensile stresses, strains and
forces are positive.

2. Coupled THM formulation for a one-dimensional beam element

2.1. Mechanical behaviour

Mechanically, the one-dimensional beam elements have six degrees
of freedom per node (three displacements and three rotations), and
transmit not only bending moments, axial and shear forces but also a
torsional moment. Fig. 1 shows a 3-noded beam element of length l in
3D and defines its six degrees of freedom: displacements u, v and w in
the global x , y and z directions, respectively, and rotations θx , θy and θz
about the global x , y and z axes, respectively. The sign convention for
rotations adopted in this paper follows the right-hand rule as illustrated
in Fig. 1.

For convenience, the global nodal displacements and rotations are
defined as two separate vectors:

=δ u v w{ } { }T (1)

=θ θ θ θ{ } { }x y z
T

(2)

Additionally, the following vectors are defined:

′ = ∂
∂

∂
∂

∂
∂{ }δ{ } u

l
v
l

w
l

T

(3)

′ = ∂
∂

∂
∂

∂
∂{ }θ{ } θ

l
θ
l

θ
l

T
x y z

(4)

2.1.1. Constitutive equations
Under isothermal conditions, the relationship between the total

strains and element forces and moments is described by the constitutive
equation [1]:

=σ D ε{Δ } [ ]{Δ }σ (5)

where for one-dimensional beam elements:

=ε ε γ γ χ χ χ{Δ } {Δ Δ Δ Δ Δ }σ a σ T
T

, 1 2 1 2 (6)

=σ F S S M M M{Δ } {Δ Δ Δ Δ Δ Δ }a T
T

1 2 1 2 (7)

ε{Δ }σ is the vector of incremental mechanical (or total under isothermal
conditions) strains whose components are: εa σ, – axial strain, γ1 and γ2 –
shear strains, χT – torsional strain, χ1 and χ2 – bending strains, whereas

σ{Δ } is the vector of incremental forces and moments whose compo-
nents are: Fa – axial force, S1 and S2 – shear forces, MT – torsional
moment, M1 and M2 – bending moments. These components are related
to three local axes, one of which is along the beam and the remaining
two are perpendicular to the beam. For a beam with linear elastic be-
haviour, the constitutive matrix, D[ ], is defined as:

=

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

D

EA
k GA

k GA
GJ

EI
EI

[ ]

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

c

s c

s c

T

1

2

1

2 (8)

where E is the Young’s modulus, Ac is the cross-sectional area, ks1 and
ks2 are the shear correction factors, G is the shear modulus, JT is the
torsional constant and I1 and I2 are the second moments of area. Note
that for beams with cross-sections which are symmetric with respect to
the two axis (i.e. circular or square), = =k k ks s s1 2 and = =I I I1 2 in Eq.
(8). The torsional constant, JT , describes the torsional stiffness of the
beam, and its value depends on the shape of the cross-section of the
beam.

In a coupled THM problem involving a two-phase porous medium
(e.g. soil), the mechanical behaviour of the material is affected by
changes in pore fluid pressure, as well as temperature. In order to
formulate the equations governing the mechanical behaviour, the

Fig. 1. 3-noded beam element in 3D global coordinate system.
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following assumptions are introduced:

(1) Changes in temperature, as well as pore fluid pressure, affect only
the axial strain in a beam element.

(2) There is an instantaneous temperature equilibrium between the
solid and fluid phases, therefore, only the overall temperature of the
medium, T , is considered here.

(3) Given a change in temperature, the solid particles and the solid
skeleton are assumed to have the same thermal elastic strain, εΔ T .

Under non-isothermal conditions the incremental total strain, ε{Δ },
can be divided into two components: the incremental mechanical
strain, ε{Δ }σ , and the incremental thermal strain ε{Δ }T , such that:

= +ε ε ε{Δ } {Δ } {Δ }σ T (9)

The incremental thermal strain is defined as
=ε α T{Δ } { Δ 0 0 0 0 0}T T

T , where αT is the linear coefficient of
thermal expansion of the material and TΔ is the incremental tem-
perature. Note that in the case of a porous material, such as soil, being
modelled, αT refers to the soil skeleton.

In soil mechanics, it is often convenient to express the constitutive
equation in terms of effective stresses, such that:

′ = ′σ D ε{Δ } [ ]{Δ }σ (10)

where ′σ{Δ } is the vector of effective forces and moments, whereas ′D[ ]
is the effective constitutive matrix. However, under non-isothermal
conditions, the effect of the thermal expansion/contraction of the ma-
terial must be taken into account. Furthermore, in a coupled THM
formulation for a porous medium, the constitutive equation must also
include the effects of the pore fluid pressure. Therefore, substituting Eq.
(9) into Eq. (10), and adopting the principle of effective stress results in:

= ′ + − ′σ D ε U D m T{Δ } [ ]{Δ } {Δ } [ ]{ }(Δ )f T (11)

where =U p A{Δ } {Δ 0 0 0 0 0}f f c
T is the incremental pore fluid

force calculated as the incremental pore fluid pressure, pΔ f , multiplied
by the cross-sectional area of the element, Ac, and

=m{ } {α 0 0 0 0 0}T T
T .

2.1.2. Finite element formulation
The relationship between the nodal degrees of freedom, d{Δ }n, and

total strains, ε{Δ }, is described by:

=ε B d{Δ } [ ]{Δ }n (12)

where B[ ] is a matrix containing derivatives of the interpolation func-
tions. Eq. (12) can also be split into four components (where εΔ a is the
incremental total axial strain):

=ε B dΔ { }{Δ }a
a

n (13)

= ⎧
⎨⎩

⎫
⎬⎭

=γ
γ
γ B d{Δ }

Δ
Δ [ ]{Δ }s

n
1

2 (14)

=χ B dΔ { }{Δ }T
t

n (15)

= ⎧
⎨⎩

⎫
⎬⎭

=χ
χ
χ B d{Δ }

Δ
Δ [ ]{Δ }b

n
1

2 (16)

where B{ }a , B[ ]s , B{ }t and B[ ]b are rows of the matrix B[ ] defined as:

= …B B B{ } {{ } { }}a a
n
a

1 (17)

= …B B B[ ] [[ ] [ ]]s s
n
s

1 (18)

= …B B B{ } {{ } { }}t t
n
t

1 (19)

= …B B B[ ] [[ ] [ ]]b b
n
b

1 (20)

The strains in a beam element are defined in terms of the global
displacements and rotations as:

= ′ε δ S{ }·{ }a (21)

= ′ −γ δ T θ U{ }·{ } { }·{ }1 (22)

= ′ +γ δ U θ T{ }·{ } { }·{ }2 (23)

= − ′χ θ S{ }·{ }T (24)

= − ′χ θ T{ }·{ }1 (25)

= − ′χ θ U{ }·{ }2 (26)

where the vectors S{ }, T{ } and U{ } are orthogonal unit vectors defined in
Fig. 2. Vector S{ } represents the orientation of the axis of the beam,
whereas vectors T{ } and U{ } represent the orientation of the cross-sec-
tion. They can be expressed as:

= ∂
∂

∂
∂

∂
∂{ }S

J
{ } 1

| |
x
S

y
S

z
S

T

(27)

= ∂
∂

∂
∂

∂
∂{ }T

J
{ } 1

| |T

x
T

y
T

z
T

T

(28)

= ∂
∂

∂
∂

∂
∂{ }U

J
{ } 1

| |U

x
U

y
U

z
U

T

(29)

where

= ⎡
⎣⎢

⎛
⎝

∂
∂

⎞
⎠

+ ⎛
⎝

∂
∂

⎞
⎠

+ ⎛
⎝

∂
∂

⎞
⎠

⎤
⎦⎥

J x
S

y
S

z
S

| |
2 2 2 1/2

(30)

= ⎡
⎣⎢

⎛
⎝

∂
∂

⎞
⎠

+ ⎛
⎝

∂
∂

⎞
⎠

+ ⎛
⎝

∂
∂

⎞
⎠

⎤
⎦⎥

J x
T

y
T

z
T

| |T

2 2 2 1/2

(31)

= ⎡
⎣⎢

⎛
⎝

∂
∂

⎞
⎠

+ ⎛
⎝

∂
∂

⎞
⎠

+ ⎛
⎝

∂
∂

⎞
⎠

⎤
⎦⎥

J x
U

y
U

z
U

| |U

2 2 2 1/2

(32)

and

=dl J dS| | (33)

By combining Eqs. (13)–(33), the B[ ] matrices associated with each
integration point, i, can be defined as:

= ′{ }B
J

N{ } 1
| |

0 0 0i
a

i
dx
dS

dy
dS

dz
dS2 (34)

=
⎡

⎣

⎢
⎢

− − − ⎤
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′ ′ ′
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dx
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J J
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dx
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J
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N
J
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J J

dx
dU

N
J J
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dU
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J J
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dU

N
J

dx
dT

N
J
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J
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dT
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| || | | || | | || | | | | | | |

i
T

i
T
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T

i
U

i
U

i
U
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U
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U

i
U

i
T

i
T

i
T

(35)

Fig. 2. Definition of vectors S{ }, T{ } and U{ }.
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= − ′{ }B
J

N{ } 1
| |

0 0 0i
t

i
dx
dS

dy
dS

dz
dS2 (36)

= − ′
⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

B
J
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| |

0 0 0
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i
b

i
J

dx
dT J
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dT J

dz
dT

J
dx
dU J
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dU J
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dU

1
| |

1
| |

1
| |

1
| |

1
| |

1
| |

T T T

U U U (37)

where Ni is the isoparametric interpolation function of the displacement
degree of freedom, whereas ′Ni is its derivative with respect to the
natural coordinate S. For a 2-noded element shown in Fig. 3(a), the
isoparametric shape functions are:

= −N S1
2

(1 )1 (38)

= +N S1
2

(1 )2 (39)

The isoparametric shape functions for a 3-noded element shown in
Fig. 3(b) are:

= −N S S1
2

( 1)1 (40)

= +N S S1
2

( 1)2 (41)

= −N S13
2 (42)

It is important to note that, when full integration (i.e. 2-point for 2-
noded elements or 3-point for 3-noded elements) is used, shear force
locking, which manifests itself as oscillating axial and shear forces, may
occur [1]. To eliminate this problem, Day [15] proposed lower order
interpolation functions derived from a least squares smoothed approx-
imation to the standard isoparametric interpolation functions. For one-
dimensional beams, these substitute functions, Ni , are used for the in-
terpolation of θ{ } in the shear strain equations (Eq. (35)). For a 2-noded
elements, the substitute interpolation functions are:

=N 1
21 (43)

=N 1
22 (44)

Whereas for 3-noded elements:

= ⎛
⎝

− ⎞
⎠

N S1
2

1
31 (45)

= ⎛
⎝

+ ⎞
⎠

N S1
2

1
32 (46)

=N 2
33 (47)

In terms of global matrices, the finite element equation associated
with equilibrium can be obtained by minimising the potential energy
with respect to the incremental nodal displacements and rotations, re-
sulting in:

+ − =K d A L p M T R[ ]{Δ } [ ]{Δ } [ ]{Δ } {Δ }G nG c G f nG G nG G (48)

where d{Δ }nG, p{Δ }f nG and T{Δ }nG are the global vectors of incremental
nodal displacement, pore fluid pressure and temperature, respectively.
The global matrices are defined as:

∫∑= ′
=

( )K B D B dl[ ] [ ] [ ][ ]G
i

N

l
T

i1 (49)

∫∑=
=

( )L B m N dl[ ] [ ] { }{ }G
i

N

l
T

p
T

i1 (50)

∫∑= ′
=

( )M B D m N dl[ ] [ ] [ ]{ }{ }G
i

N

l
T

T T
T

i1 (51)

∫∑=
=

( )R N F dl{Δ } [ ] {Δ }G
i

N

l
T

i1 (52)

where N[ ], N{ }p and N{ }T are the matrices or vectors of interpolation
functions of displacement, pore fluid pressure and temperature degrees
of freedom, respectively, =m{ } {1 0 0 0 0 0}T , and F{Δ } is the
vector of applied external forces.

2.2. Fluid flow

The fluid flow along a one-dimensional beam element is described
by the continuity equation for compressible pore fluids:

∂
∂

−
∂
∂

− = −
∂

∂
v
l

n
K

p
t

Q
ε

t
f

f

f f v σ,

(53)

where vf is the seepage velocity along the beam element, n is the por-
osity, Kf is the bulk modulus of the fluid, t is time and Q f is any fluid
source or sink. Since in the formulation for this type of element it is
assumed that no strains in the transverse direction are calculated, the
volumetric mechanical strain, εv σ, , is reduced to the axial strain:

= = −ε ε ε εv σ a σ a T, , .
However, in a coupled THM formulation, the effect of temperature

changes on the pore fluid pressure must be taken into account.
Therefore, an additional term representing the change in volume of the
fluid due to a temperature change is included in Eq. (53), such that:

∂
∂

−
∂
∂

− − ∂
∂

− = − ∂ −
∂

v
l

n
K

p
t

n α α T
t

Q ε ε
t

( ) ( )f

f

f
Tf T

f a T

(54)

where αTf is the linear thermal expansion coefficient of pore fluid. The
seepage velocity is governed by Darcy’s law which is expressed as:

= − ∂
∂

v k h
lf f

i
(55)

where kf is the permeability, and hi is the hydraulic head defined as:

= − + + +h
p
γ

xi yi zi( )i
f

f
Gx Gy Gz

(56)

where γf is the specific weight of the pore fluid and =i i i i{ } { }G Gx Gy Gz
T

is the unit vector parallel, but in the opposite direction, to gravity.
Substituting Eqs. (55) and (56) into the continuity equation (Eq.

(54)), applying the principle of virtual work and minimising the po-
tential energy with respect to the incremental nodal fluid pressure,
results in the following finite element equation associated with fluid
flow under non-isothermal conditions:

− − − = − +L d
t

p S
p

t
Z T

t
n Q[ ] {Δ }

Δ
[Φ ]{ } [ ]

{Δ }
Δ

[ ] {Δ }
Δ

{ }G
T nG

G f nG G
f nG

G
nG

G
f

(57)

Fig. 3. (a) 2-noded beam element, and (b) 3-noded
beam element with natural coordinate S .
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where the global matrices are defined as:

∫∑=
=

( )L N m B dl[ ] { }{ } [ ]G
T

i

N

l p
T

i1 (58)

∫∑= ⎛

⎝
⎜ ′ ′ ⎞

⎠
⎟

=

k
γ J

N N dl[Φ ]
| |

{ }{ }G
i

N

l

f

f
p p

T

i1
2

(59)

∫∑ ⎜ ⎟= ⎛
⎝

⎞
⎠=

S n
K

N N dl[ ] { }{ }G
i

N

l f
p p

T

i1 (60)

∫∑= − +
=

( )Z n α α α N N dl[ ] ( ( ) ){ }{ }G
i

N

l Tf T T p T
T

i1 (61)

∫∑ ⎜ ⎟= ⎛
⎝

′ ⎞
⎠=

n
k
J

N i dl{ }
| |

{ }G
i

N

l

f
p G

i1 (62)

= = ⎛
⎝

+ + ⎞
⎠

i S i
J

dx
dS

i dy
dS

i dz
dS

i{ }·{ } 1
| |G G Gx Gy Gz (63)

In order to solve Eq. (57), a time marching scheme must be adopted.
Provided that the solution at time t1 is known, the solution at time

= +t t tΔ2 1 can be found assuming that:

∫ = +p dt p β p t[Φ ]{ } [Φ ][({ } ) {Δ } ]Δ
t

t
G f nG G f nG f nG1 1

1

2

(64)

where β1 is the time marching parameter for fluid flow, and p({ } )f nG 1 is
the pore fluid pressures at time t1. It should be noted that the time
matching scheme is stable provided β1 is between 0.5 and 1.0 [16].
Substituting Eq. (64) into Eq. (57) results in:

+ − − −

= − + +

L d β t S p Z T

n p Q t

[ ] {Δ } ( Δ [Φ ] [ ]){Δ } [ ]{Δ }

( { } [Φ ]({ } ) )Δ

G
T

nG G G f nG G nG

G G f nG
f

1

1 (65)

2.3. Heat transfer

The equation governing the transfer of heat in coupled THM pro-
blems is formulated based on the following assumptions:

(1) Heat may be transferred along the beam by conduction and ad-
vection. Heat transfer by radiation is assumed negligible [17] and,
therefore, is not taken into account in this formulation.

(2) The previously made assumption that the solid particles and the
solid skeleton have the same thermal elastic strain, εΔ T , leads to the
assumption that the thermal volumetric changes of the solid frac-
tion in a mechanically unrestrained and free draining medium do
not affect the void ratio. This implies that during thermal expansion
or contraction of the solid particles, the volumes of both the solid
skeleton and the voids change proportionally to their initial vo-
lumes and by the same factor. Therefore, only the volumetric
changes caused by changes in effective stresses can alter the void
ratio.

The flow of heat along a one-dimensional beam element is described
by the law of conservation of energy:

∂
∂

+ ∂
∂

− =dV
t

Q
l

dV Q dV(Φ ) 0T T T
(66)

where QT is the total heat flux, QT represents any heat source or sink,
dV is the volume of the beam and ΦT is the heat content of the beam per
unit volume which, when using this type of finite element to model
fully saturated porous media, can be calculated as:

= + − −nρ C n ρ C T TΦ [ (1 ) ]( )T f pf s ps r (67)

where n is the porosity, ρf and ρs are the densities of pore fluid and solid
particles, respectively, Cpf and Cps are the specific heat capacities of

pore fluid and solid particles, respectively, and Tr is a reference tem-
perature. The total heat flux, QT , can be divided into two contributions:
heat conduction, Qd, and heat advection, Qa, which are defined as:

= − ∂
∂

Q k T
ld T (68)

= −Q ρ C v T T( )a f pf f r (69)

where kT is the thermal conductivity of the material. Substituting Eqs.
(67)–(69) into Eq. (66) results in:
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However, the porosity can also be expressed in terms of the void
ratio, e, such that = +n e e/(1 ), whereas the total volume can be
written in terms of the volume of the soil particles, dVs, such that

= +dV e dV(1 ) s. Substituting these expressions into Eq. (70) leads to:
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According to assumption (2) above, dVs varies with temperature
such that:

= +dV ε dV(1 )s T s0 (72)

where dVs0 is the initial volume of the soil particles, and εT is the
thermal strain. Substituting Eq. (72) into Eq. (71) and eliminating dVs0
results in:
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The assumption that the thermal strain does not affect the void ratio
leads to the following relationship between the changes in void ratio
and the changes in volumetric strain in a small displacement analysis:
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where e0 is initial void ratio. Substituting Eq. (74) into Eq. (73) and
assuming that the fluid density does not change results in:
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Using the principle of virtual work and minimising the potential
energy with respect to the incremental nodal temperature results in the
following finite element equation governing the transfer of heat:
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where the global matrices are defined as:
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In order to solve Eq. (76), a time marching scheme must be adopted.
Similar to the fluid flow governing equations, it can be assumed that:
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where β2 and α1 are the time marching parameters which must be be-
tween 0.5 and 1.0 for the scheme to be stable [18]. Substituting Eqs.
(83) and (84) into Eq. (76) yields:
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2.4. Finite element formulation

The matrix form of the coupled THM formulation for one-dimen-
sional beam elements can be obtained by assembling Eqs. (48), (65) and
(85), resulting in:
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where the vectors F{Δ }G and H{Δ }G are defined by the rand-hand sides of
Eqs. (65) and (85).

2.5. Petrov-Galerkin FEM

The finite element formulation presented so far adopts the widely
used Galerkin finite element method (GFEM) which is capable of si-
mulating most problems encountered in engineering. However, it is
widely known that the GFEM, where the weight functions coincide with
the shape functions, may produce erroneous solutions, characterised by
an oscillating temperature distribution, when modelling highly ad-
vective fluid flows – i.e. flows where advection dominates heat transfer.
It has been shown that the magnitude of these unnatural oscillations
increases with increasing Péclet number (e.g. [18–21]), which describes
the ratio between the advective and conductive heat fluxes and can be
defined as:

=Pe
ρ C v L

k
f pf f

T (87)

where L is the characteristic length in the direction of flow. In the case
of the finite element method, L is the element length in the direction of
fluid flow. Clearly, for a problem with specific material properties (ρf ,
Cpf , kT) and fluid velocity (vf ), the Péclet number can be reduced by

reducing the finite element length (L). However, in problems such as
those involving heat exchanger pipes, this approach may result in a
large number of very small elements, and hence significantly increase
the computational effort.

To overcome these issues, a new finite element method called the
Petrov-Galerkin finite element method (PGFEM), which modifies the
nodal weighting functions to weigh the upstream nodes more heavily
than the downstream ones, has been developed. Numerous weighting
functions for both one-dimensional and two-dimensional elements have
been proposed in the literature (e.g. [22–26]). Some of these formula-
tions resulted in oscillating and/or over-diffused solutions which re-
duced the reliability of the PGFEM. However, as was argued by Brooks
and Hughes [27] and also found by Cui et al. [28], the PGFEM produces
accurate solutions provided that appropriate weighting functions are
adopted and they are applied to all terms of the advection–diffusion
equation.

In order to allow modelling of highly advective flows ( >Pe 1) along
the one-dimensional beam elements presented in this paper, the PGFEM
proposed by Cui et al. [28] was adopted instead of the conventional
GFEM to obtain the FE formulation based on the law of energy con-
servation (Eq. (66)). This involves using weighting functions, W{ },
which are different from the temperature interpolation functions, N{ }T ,
(while, as previously mentioned, the GFEM assumes =W N{ } { }T ). The
resulting global matrices from Eq. (85) are presented in Appendix B.
The FE equations governing the mechanical equilibrium and the fluid
flow remain in the conventional Galerkin form. The PG formulation for
one-dimensional elements presented by Cui et al. [28] adopts weighting
functions for linear (i.e. 2-noded) elements developed by Huyakorn
[23], whereas those for quadratic (i.e. 3-noded) elements were origin-
ally proposed by Heinrich and Zienkiewicz [29]. For completeness, the
weighting functions are presented in Appendix B.

3. Validation

This section presents a number of validation exercises carried out to
demonstrate the performance of the newly developed one-dimensional
beam elements. The results obtained using ICFEP were compared
against analytical solutions or other numerical solutions found in the
literature. It should be noted that the PGFEM was adopted in the ana-
lyses involving highly advective flows (Section 3.4), whereas in all
other analyses (Sections 3.1–3.3), the conventional GFEM was used.

3.1. Mechanical behaviour

In order to validate the mechanical behaviour, two validation ex-
ercises, which were originally performed by Day and Potts [13] with
beam elements for 2D analysis, were carried out using the one-dimen-
sional beam elements developed here. These particular tests were
chosen as Day and Potts [13] demonstrated that previous formulations
for beams for 2D analysis found in the literature were not able to si-
mulate the behaviour of curved beams correctly. In both tests, 3-noded
elements with reduced integration were used in order to prevent
locking problems.

The first test involved rigid body displacement of the curved beam
shown in Fig. 4. Points 1 and 3 were restrained in the y-direction and,
given that this was a 3D analysis, an additional restraint preventing
displacements along the z-direction (i.e. perpendicular to the plane
shown in Fig. 4) was introduced. A displacement of 1m in the
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x -direction was applied at point 1. The analysis was repeated with 1
and 10 elements. In both cases, the horizontal displacement was 1m at
all nodes, whereas all other degrees of freedom were zero. Moreover, all
strain components were equal to zero, as expected from a rigid body
movement. It should be noted that this test was repeated with different
orientations of the beam in 3D space, yielding the exact solution every
time.

In the second test, the cantilever shown in Fig. 5 was subjected to
point loads of −10 kN in the x - and y-directions at point 3. The beam’s
material properties are listed in Table 1. At point 1, all displacements
and rotations were prevented. Analyses with either 2 or 10 elements
were performed.

Fig. 6 plots the nodal rotations (around the z -axis in the 3D case)
along the cantilever beam, whereas Table 2 lists the reactions at point 1
and displacements at points 2 and 3. For comparison, the results of the
equivalent 2D plane strain analyses performed by Day and Potts [13]
are also shown. It is clear that the results of all numerical analyses are in
excellent agreement with the exact solution from Roark and Young
[30], even when only two elements are used. It should also be noted
that the results of 2D and 3D analyses with the same number of ele-
ments are exactly the same.

3.2. Isothermal consolidation

The exercise used for validation of isothermal coupled consolidation
along one-dimensional beams is based on the tests firstly carried out by
Aboustit et al. [31] and Aboustit et al. [32], and subsequently used to
validate other finite element software (e.g. [14,33–36]). Although the
original test was performed with 2D solid finite elements, the same
problem is represented here in 3D with the new one-dimensional beam
elements. The adopted mesh is shown in Fig. 7. The material properties
used (listed in Table 3) are the same as in the original test, with the
exception of the Poisson’s ratio, which is zero for the one-dimensional
beam elements (i.e. there is no Poisson’s ratio effect in the one-di-
mensional beam formulation). The displacement boundary conditions

Fig. 4. Curved beam used for rigid body displacement validation exercise
(based on Day and Potts [13].

Fig. 5. Cantilever beam used for validation of mechanical behaviour (based on
Day and Potts [13].

Table 1
Cantilever beam material properties for validation of mechanical be-
haviour.

Young’s modulus, E (kPa) 2.32×107

Cross-sectional area, Ac (m2) 0.1
Second moment of area, I (m4) 8.33×10−4

Torsional constant, JT (m4) 1.41×10−3

Fig. 6. Nodal rotations along the cantilever beam.

Table 2
Results of cantilever beam analyses.

Exact [30] 2 elements
(2D & 3D)

10 elements
(2D & 3D)

Reactions at point 1 Rx 10.0 10.0 10.0
Ry 10.0 10.0 10.0
Mz or
M

150.0 150.0 150.0

Displacements at point 2 u −0.148 −0.146 −0.148
v −0.092 −0.090 −0.092

Displacements at point 3 u −0.373 −0.371 −0.373
v −0.092 −0.090 −0.092

Note: = = =R M M 0.0z x y at point 1 and = = =w θ θ 0.0x y at all nodes in 3D
analyses.
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were prescribed such that only 1D deformation was allowed. A down-
ward vertical load of 2 N (equivalent to the stress of 1 Pa used in the
original analysis) was applied at point 1. Additionally, the pore fluid
pressure at point 1 was not allowed to change throughout the analysis
and a no fluid flow boundary condition was prescribed at point 2. As in
the original test, gravity was set in the out-of-plane direction. The time-

step size was chosen as 1 s for the first 10 increments and 10 s for the
remainder of the analysis, as suggested by Cui et al. [37] and Cui et al.
[14].

The vertical displacement of point 1 obtained using ICFEP was
compared to the analytical solution presented in Biot [38]. Fig. 8 shows
an excellent agreement between the numerical and analytical results
demonstrating the validity of the coupled hydro-mechanical formula-
tion.

3.3. Non-isothermal consolidation

The coupled THM behaviour of one-dimensional beams was vali-
dated through an exercise involving non-isothermal consolidation. As
there is no exact solution to this problem, the ICFEP results can only be
compared with the solutions of other FE programs. Cui et al. [14]
verified the coupled THM equations for 2D solid elements in ICFEP by
carrying out an analysis of non-isothermal consolidation which was first
performed by Aboustit et al. [31] and Aboustit et al. [32], and subse-
quently by Noorishad et al. [33], Lewis et al. [34], as well as Gatmiri
and Delage [35]. The ICFEP solution was then compared to the results
presented in these publications showing a good agreement with
Aboustit et al. [31], Noorishad et al. [33] and Lewis et al. [34]. It
should be noted that the results of Gatmiri and Delage [35] did not
agree with the other FE software in either the coupled isothermal
consolidation exercise described previously nor this coupled non-iso-
thermal consolidation analysis.

The coupled THM behaviour of one-dimensional beam elements was
therefore validated against the solutions obtained using 2D and 3D solid
elements in ICFEP. The mesh used in the analysis is shown in Fig. 7. The
same material properties, listed in Table 4, as those in the original
analysis by Aboustit et al. [31] were adopted. However, it should be
noted that the Poisson’s ratio of the solid was set to zero in order for
their behaviour to be more comparable to that of the one-dimensional
beam elements presented in this paper (since the present formulation
assumes that no strains in the transverse direction are calculated). Si-
milar to the previously described isothermal consolidation test, the
mesh in this exercise was restrained to allow only 1D deformation. At
point 1, a downward point load of 2 N and no change in pore fluid
pressure were prescribed. In order to include the thermal effects, a
constant temperature of 50 °C was applied at point 1. No fluid or heat
flow was allowed at point 2 and gravity was set in the out-of-plane
direction. The time-step size was 1 s for the first 10 increments and 10 s
for the remainder of the analysis as recommended by Cui et al. [14].

Fig. 9 presents the vertical displacement at point 1 observed in
ICFEP analyses with different element types. In order to illustrate the
effect of temperature, the results of the isothermal consolidation ex-
ercise (Fig. 8) are also plotted. As time passes, the volume of material
subjected to a rise in temperature increases. The volumetric expansion
associated with this temperature increase leads to an upward move-
ment which partially offsets the settlement due to the consolidation
process. This is especially visible at larger times, when the solution of

Fig. 7. Mesh with one-dimensional elements used for validation of coupled
consolidation behaviour (based on [31]).

Table 3
Material properties for validation of isothermal coupled consolidation
behaviour [31].

Young’s modulus, E (Pa) 6.0×103

Permeability, kf (m/s) 3.92× 10−5

Initial void ratio, e0 0.25
Initial pore fluid pressure, pf 0 (kPa) 0.0

Fig. 8. Validation of the isothermal coupled consolidation behaviour – vertical
displacement of point 1 over time.

Table 4
Material properties and initial conditions for validation of coupled THM be-
haviour [31].

Young’s modulus, E (Pa) 6.0×103

Linear coefficient of thermal expansion of solid particles, αT (m/m °C) 3.0×10−7

Linear coefficient of thermal expansion of pore fluid, αfT (m/m °C) 3.0×10−7

Volumetric heat capacity of solid particles, ρ Cs ps (J/m3 °C) 1.672× 105

Volumetric heat capacity of pore fluid, ρ Cf pf (J/m3 °C) 1.672× 105

Thermal conductivity, kT (W/m °C) 836
Permeability, kf (m/s) 3.92× 10−5

Initial void ratio, e0 0.25
Initial temperature, Ti (°C) 0.0
Initial pore fluid pressure, pf 0 (kPa) 0.0
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the THM analyses deviates from the solution of isothermal consolida-
tion. While the displacement trend is the same in all THM analyses, the
displacement values differ slightly. It is important to note that the two
responses should not be exactly the same, as the thermal volumetric
strain, εΔ vT , is defined differently for different element types. Solid
elements deform thermally in three dimensions (i.e. =ε α TΔ 3 ΔvT T ),
whereas one-dimensional beam elements for 3D analysis deform only
axially (i.e. =ε α TΔ ΔvT T ). Due to the fact that only 1D deformation was
allowed in all analyses, the vertical thermal strain is the same (i.e.

=ε α TΔ ΔT y T, ) and the horizontal total strain is zero for all element
types. This implies that different elements experience different hor-
izontal mechanical strains which are equal to − α T2 ΔT and 0 for solid
and 3D beam elements, respectively. Therefore, as the temperature
increases and the material tries to expand, the horizontal restriction
results in a reduction in the horizontal total stress and pore fluid
pressure (i.e. these stresses become more compressive), in solid ele-
ments. In the vertical direction, the reduction in pore fluid pressure
leads to an increase in the vertical effective stress (i.e. vertical effective
stress becomes less compressive), and hence, an additional upward
displacement. Conversely, the one-dimensional beam elements do not
experience changes in pore fluid pressure due to temperature changes
because of the assumption of the same thermal expansion coefficient of

solid particles and pore fluid adopted in this problem. These mechan-
isms are further illustrated in Fig. 10 which plots the change in pore
fluid pressure ( pΔ f ), the change in vertical effective stress ( ′σΔ y) and the
vertical mechanical strain ( εΔ σ y, ) at point 3 (see Fig. 7) over time. In-
itially, the pore fluid pressure reduces by 1 kPa in all cases due to the
application of the point load. As time passes, these excess pore fluid
pressures dissipate such that the vertical effective stress reduces (i.e.
becomes more compressive). The rate of pore fluid pressure dissipation
(and therefore rate of reduction in vertical effective stress) is lower in
the solid elements due to the additional excess pore fluid pressures
resulting from lateral confinement. These additional excess pore fluid
pressures lead to swelling of the material, and therefore, a lower rate of
reduction of the vertical mechanical strain (which is compressive due to
the application of the point load). Hence, by taking the displacement
during isothermal consolidation as a baseline, the largest upward dis-
placement is observed in the solid elements and the smallest in the one-
dimensional beam elements. Finally, it is interesting to note that, as all
excess pore fluid pressures dissipate, the same final vertical displace-
ment is measured in all analyses, with the thermally-induced compo-
nent being given by α TLΔT (where L is the height of the column).

3.4. Highly advective flow

The final validation exercises were performed in order to demon-
strate the ability of the new one-dimensional beam elements to simulate
highly advective flows, and therefore, its applicability to the modelling
of heat exchanger pipes. In the following analyses, both the GFEM and
the PGFEM were adopted.

Fig. 11 shows the beam used in the 3D analyses. The conductive-
advective flow of heat from left to right was simulated by applying pore
fluid pressures, pf , at both ends of the beam to induce a fluid flow with
a constant and uniform velocity, as well as a heat source in the form of a
fixed temperature of 10 °C at point 1. At point 2, a fixed temperature of
0 °C (i.e. no change from the initial temperature) was prescribed. The

Fig. 9. Validation of the THM behaviour – vertical displacement of point 1 over
time.

Fig. 10. Validation of the THM behaviour – change in pore fluid pressure ( pΔ f ), vertical effective stress ( ′σΔ y) and vertical mechanical strain ( εΔ σ y, ) at point 3 over
time.

Fig. 11. Geometry of the analysed problem with initial and boundary condi-
tions.
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material properties used in all analyses presented in this section are
listed in Table 5. Analyses with Péclet numbers of 10, 100 and 10,000
were performed which was achieved by varying the fluid velocity and
number of elements, ne, in the mesh. Full integration (i.e. 2-point for 2-
noded and 3-point for 3-noded elements) was chosen in all analyses.
Gravity was set in a direction perpendicular to the beam so that it does
not interfere with the fluid flow.

Fig. 12 presents the nodal temperature distributions along the beam
with 2-noded linear elements and 3-noded quadratic elements for a
Péclet number of 100. For completeness, the results of the analyses with
Péclet numbers of 10 and 10,000 are presented in Appendix B. In order
to provide a clear illustration of the advantages of using the PGFEM, the
figures also show the solutions of the same analyses performed with the
GFEM.

Cui et al. [18] observed that the temperature oscillations produced
by the GFEM occur only once the heat front reaches the boundary of the
mesh (i.e. point 2). This is also demonstrated in Fig. 12 which shows
that the results of the transient stage are free of oscillations. It should be
noted that the numerical results of the transient stage (obtained using
both the GFEM and the PGFEM) were compared against the approx-
imate solution of the advection–diffusion equation by van Genuchten
and Alves [39] showing an exact match, and hence verifying the ac-
curacy of both the GFEM and the PGFEM for the transient stage of the
analysis. When a fixed temperature is prescribed at point 2, the oscil-
lations increase once the heat front reaches the mesh boundary until a
steady state is achieved with maximum amplitude of oscillations. It is
also clear that adopting the PGFEM eliminates this problem and results
in an exact solution of a uniform temperature along the beam except for
the last node where a no change from the initial condition is prescribed.
The results of this validation exercise clearly demonstrate the effec-
tiveness of the adopted PGFEM in the context of advection-dominated
heat flux problems, such as those where the proposed element is used to
simulate heat exchanger pipes.

4. Conclusions

This paper presents a coupled THM FE formulation of a one-di-
mensional beam element for 3D analysis. The key conclusions can be
summarised as follows:

(1) The mechanical behaviour of the new beam element was for-
mulated based on that of Mindlin’s beam elements for 2D analysis
proposed by Day and Potts [13]. It was shown that the new one-
dimensional beam performs well as either a straight or curved
beam.

(2) The coupled THM formulation is based on that for continuum ele-
ments developed and implemented into ICFEP by Cui et al. [14].
Therefore, compatibility of the one-dimensional beam element with
other finite element types available in this code is ensured. This
allows modelling the interactions between one-dimensional beam
elements and other structural elements, as well as the surrounding
medium (e.g. the soil mass).

(3) In order to enable modelling of highly advective flows such as those
present in heat exchanger pipes, the Petrov-Galerkin FEM proposed
by Cui et al. [28] was adopted for the solution of the energy con-
servation equation instead of the conventional Galerkin FEM. This
method adopts weighting functions which are different from the
temperature interpolation functions and produces solutions which
are accurate and free of numerical oscillations.

(4) The one-dimensional beams may behave as a two-phase porous
material or a single-phase material depending on the properties
chosen for the two phases. Moreover, as any of the three systems in
the THM formulation may be disabled, the beam’s behaviour can be
modelled as coupled HM, TH or TM, or uncoupled mechanical,
hydraulic or thermal.

(5) The validation exercises presented showed an excellent match be-
tween the computed results and the exact or approximate solutions.
In cases where such solutions were not available, the numerical
results compared well with other numerical solutions obtained
using other element types.

Table 5
Material properties adopted in validation exercises involving highly advective
flows.

Density of solid particles, ρs (kg/m3) 2500
Density of pore fluid, ρf (kg/m3) 1000

Specific heat capacity of solid particles, Cps (kJ/kg °C) 0.88

Specific heat capacity of pore fluid, Cpf (kJ/kg °C) 4.18

Thermal conductivity, kT (kW/m °C) 0.002
Porosity, n 0.44

Fig. 12. Temperature distribution along the bar with Pe= 100 ( =n 30e ): (a) 2-
noded linear elements and (b) 3-noded quadratic elements.
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(6) This flexible formulation allows simulation of a variety of applica-
tions from structural elements, which require mechanical equa-
tions, to heat exchanger pipes with TH coupling and thermal drains
with full THM coupling.
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Appendix A

The coupled THM formulation for one-dimensional bar elements is the same as that of one-dimensional beam elements with the exception of the
mechanical behaviour. The difference between the two element types is that bar elements have only three displacement degrees of freedom (u, v and
w in the global x , y and z directions) and deform only axially. Therefore, the B[ ] matrix consists only of the terms of B{ }i

a defined by Eq. (34), and the
constitutive equation (Eq. (5)) reduces to account only for axial strain and axial force:

=F EA εΔ Δa c a σ, (88)

Appendix B

B.1. Petrov-Galerkin FE formulation

When the PGFEM is adopted for solution of the heat transfer equation, the global matrices in Eq. (85) become:

∫∑= ⎛
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It should be noted that the residual (or ‘out-of-balance-force’) heat flux must also be modified by replacing the shape functions with the PG
weighting functions.

B.2. Weighting functions for linear elements

The weighting functions for the 2-noded linear isoparametric element shown in Fig. 3(a) are defined as:

= +W S N S α f S( ) ( ) ( )l PG,1 1 (94)

= −W S N S α f S( ) ( ) ( )l PG,2 2 (95)

where the subscripts denote the nodal number, N1 and N2 are the isoparametric nodal shape functions, S represents the natural coordinate of the 1D
elements, αPG is the PG weighting factor and the function f s( ) was chosen as:

= − + − − ⩽ ⩽f S S S S( ) 3
4

(1 )(1 ) ( 1 1) (96)

The PG weighting factor, αPG, controls the level of upwinding. Its optimal value depends on the Péclet number and can be calculated as:

= ⎛
⎝

⎞
⎠

−α Pe
Pe

coth
2

2
opt (97)

It should be noted that the above weighting functions were first adopted by Huyakorn [23] for solving 1D steady state advection–diffusion
problems with 2-noded linear elements. Later, Huyakorn and Nilkuha [40] attempted to apply these weighting functions to the solution of the 1D
transient advection–diffusion equation. However, unlike the formulation proposed by Cui et al. [28], the original shape functions N{ }T , instead of the
new weighting functions W{ }, were used in the X[ ]G matrix (Eq. (91)). Therefore, the numerical examples they presented exhibited oscillations and
over-diffused solutions.

B.3. Weighting functions for quadratic elements

The weighting functions for the 3-noded linear isoparametric element shown in Fig. 3(b) are defined as:

= − =W S N S β g S i( ) ( ) ( ) ( 1, 2)q i i PG, 1 (98)
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= +W S N S β g S( ) ( ) 4 ( )q PG,3 3 2 (99)

where βPG1 and βPG2 are the PG weighting factors and the function g S( ) was defined as:

= + − − ⩽ ⩽g S S S S S( ) 5
8

( 1)( 1) ( 1 1)
(100)

The optimal value of the PG weighting factors βPG1 and βPG2 can be obtained from:
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−β Pe
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coth
4

4
opt2, (102)

The above weighting functions were first proposed by Heinrich and Zienkiewicz [29] who successfully simulated 1D steady state ad-
vection–diffusion problems with 3-noded quadratic elements. It should be noted that behaviour of these weighting function in solving 1D transient
advection–diffusion problems has not been shown elsewhere in the literature.

Fig. B1. Temperature distribution along the bar with 2-noded linear elements: (a) Pe= 10 ( =n 60e ), (b) Pe=10,000 ( =n 15e ), and 3-noded quadratic elements: (c)
Pe=10 ( =n 60e ), (d) Pe=10,000 ( =n 15e ).
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B.4. Further validation of highly advective flow

Fig. B1 presents the results of the validation exercise described in Section 3.4, with Péclet numbers of 10 and 10,000 where a fixed temperature
boundary condition was prescribed at point 2 (see Fig. 11). Although the oscillations at the steady state in the results obtained with the GFEM
increase with Péclet number, the PGFEM produces the correct solution.
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