25 research outputs found

    Accuracy of effective mass equation for a single and double cylindrical quantum dot

    Full text link
    In this contribution we study the accuracy of various forms of electron effective mass equation in reproducing spectral and spin-related features of quantum dot systems. We compare the results of the standard 8 band k.p model to those obtained from effective mass equations obtained by perturbative elimination procedures in various approximations for a cylindrical quantum dot or a system of two such dots. We calculate the splitting of electronic shells, the electron g-factor and spin-orbit induced spin mixing and show that for a cylindrical dot the g-factor is reproduced very exactly, while for the two other quantities the effective mass equation is much less accurate

    Exciton lifetime and emission polarization dispersion in strongly in-plane asymmetric nanostructures

    Get PDF
    We present experimental and theoretical investigation of exciton recombination dynamics and the related polarization of emission in highly in-plane asymmetric nanostructures. Considering general asymmetry- and size-driven effects, we illustrate them with a detailed analysis of InAs/AlGaInAs/InP elongated quantum dots. These offer a widely varied confinement characteristics tuned by size and geometry that are tailored during the growth process, which leads to emission in the application-relevant spectral range of 1.25-1.65 {\mu}m. By exploring the interplay of the very shallow hole confining potential and widely varying structural asymmetry, we show that a transition from the strong through intermediate to even weak confinement regime is possible in nanostructures of this kind. This has a significant impact on exciton recombination dynamics and the polarization of emission, which are shown to depend not only on details of the calculated excitonic states but also on excitation conditions in the photoluminescence experiments. We estimate the impact of the latter and propose a way to determine the intrinsic polarization-dependent exciton light-matter coupling based on kinetic characteristics.Comment: 11 pages, 8 figure

    Exciton lifetime and emission polarization dispersion in strongly in-plane asymmetric nanostructures

    Get PDF
    The work was supported by the Grant No. 2011/02/A/ST3/00152 from the Polish National Science Centre (Narodowe Centrum Nauki). K. G. acknowledges support by the Grant No. 2014/12/B/ST3/04603 from the Polish National Science Centre (Narodowe Centrum Nauki). S. H. acknowledges support from the State of Bavaria in Germany.We present experimental and theoretical investigation of exciton recombination dynamics and the related polarization of emission in highly in-plane asymmetric nanostructures. Considering general asymmetry- and size-driven effects, we illustrate them with a detailed analysis of InAs/AlGaInAs/InP elongated quantum dots. These offer a widely varied confinement characteristics tuned by size and geometry that are tailored during the growth process, which leads to emission in the application-relevant spectral range of 1.25-1.65 μm. By exploring the interplay of the very shallow hole confining potential and widely varying structural asymmetry, we show that a transition from the strong through intermediate to even weak confinement regime is possible in nanostructures of this kind. This has a significant impact on exciton recombination dynamics and the polarization of emission, which are shown to depend not only on details of the calculated excitonic states but also on excitation conditions in the photoluminescence experiments. We estimate the impact of the latter and propose a way to determine the intrinsic polarization-dependent exciton light-matter coupling based on kinetic characteristics.PostprintPeer reviewe

    Duality relations between spatial birth-death processes and diffusions in Hilbert space

    Get PDF
    Spatially dependent birth-death processes can be modelled by kinetic models such as the BBGKY hierarchy. Diffusion in infinite dimensional systems can be modelled with Brownian motion in Hilbert space. In this work Doi field theoretic formalism is utilised to establish dualities between these classes of processes. This enables path integral methods to calculate expectations of duality functions. These are exemplified with models ranging from stochastic cable signalling to jump-diffusion processes

    Phonon Effects on Population Inversion in Quantum Dots:Resonant, Detuned and Frequency-Swept Excitations

    No full text
    The effect of acoustic phonons on different light-induced excitations of a semiconductor quantum dot is investigated. Resonant excitation of the quantum dot leads to the Rabi oscillations, which are damped due to the phonon interaction. When the excitation frequency is detuned, an occupation can only occur due to phonon absorption or emission processes. For frequency-swept excitations a population inversion is achieved through adiabatic rapid passage, but the inversion is also damped by phonons. For all three scenarios the influence of the phonons depends non-monotonically on the pulse area
    corecore