113 research outputs found

    Landmark Image Retrieval Using Visual Synonyms

    Get PDF
    In this paper, we consider the incoherence problem of the visual words in bag-of-words vocabularies. Different from existing work, which performs assignment of words based solely on closeness in descriptor space, we focus on identifying pairs of independent, distant words - the visual synonyms - that are still likely to host image patches with similar appearance. To study this problems we focus on landmark images, where we can examine whether image geometry is an appropriate vehicle for detecting visual synonyms. We propose an algorithm for the extraction of visual synonyms in landmark images. To show the merit of visual synonyms, we perform two experiments. We examine closeness of synonyms in descriptor space and we show a first application of visual synonyms in a landmark image retrieval setting. Using visual synonyms, we perform on par with the state-of-the-art, but with six times less visual words

    Spectral Smoothing Unveils Phase Transitions in Hierarchical Variational Autoencoders

    Get PDF
    Variational autoencoders with deep hierarchies of stochastic layers have been known to suffer from the problem of posterior collapse, where the top layers fall back to the prior and become independent of input. We suggest that the hierarchical VAE objective explicitly includes the variance of the function parameterizing the mean and variance of the latent Gaussian distribution which itself is often a high variance function. Building on this we generalize VAE neural networks by incorporating a smoothing parameter motivated by Gaussian analysis to reduce higher frequency components and consequently the variance in parameterizing functions and show that this can help to solve the problem of posterior collapse. We further show that under such smoothing the VAE loss exhibits a phase transition, where the top layer KL divergence sharply drops to zero at a critical value of the smoothing parameter that is similar for the same model across datasets. We validate the phenomenon across model configurations and datasets

    Low Bias Low Variance Gradient Estimates for Boolean Stochastic Networks

    Get PDF
    Stochastic neural networks with discrete random variables are an important class of models for their expressiveness and interpretability. Since direct differentiation and backpropagation is not possible, Monte Carlo gradient estimation techniques are a popular alternative. Efficient stochastic gradient estimators, such Straight-Through and Gumbel-Softmax, work well for shallow stochastic models. Their performance, however, suffers with hierarchical, more complex models. We focus on stochastic networks with Boolean latent variables. To analyze such networks, we introduce the framework of harmonic analysis for Boolean functions to derive an analytic formulation for the bias and variance in the Straight-Through estimator. Exploiting these formulations, we propose \emph{FouST}, a low-bias and low-variance gradient estimation algorithm that is just as efficient. Extensive experiments show that FouST performs favorably compared to state-of-the-art biased estimators and is much faster than unbiased ones

    Rotation Equivariant Siamese Networks for Tracking

    Get PDF

    PC-Reg: A pyramidal prediction–correction approach for large deformation image registration

    Get PDF
    Deformable image registration plays an important role in medical image analysis. Deep neural networks such as VoxelMorph and TransMorph are fast, but limited to small deformations and face challenges in the presence of large deformations. To tackle large deformations in medical image registration, we propose PC-Reg, a pyramidal Prediction and Correction method for deformable registration, which treats multi-scale registration akin to solving an ordinary differential equation (ODE) across scales. Starting with a zero-initialized deformation at the coarse level, PC-Reg follows the predictor–corrector regime and progressively predicts a residual flow and a correction flow to update the deformation vector field through different scales. The prediction in each scale can be regarded as a single step of ODE integration. PC-Reg can be easily extended to diffeomorphic registration and is able to alleviate the multiscale accumulated upsampling and diffeomorphic integration error. Further, to transfer details from full resolution to low scale, we introduce a distillation loss, where the output is used as the target label for intermediate outputs. Experiments on inter-patient deformable registration show that the proposed method significantly improves registration not only for large but also for small deformations
    • …
    corecore