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Abstract

Rotation is among the long prevailing, yet still unre-
solved, hard challenges encountered in visual object track-
ing. The existing deep learning-based tracking algorithms
use regular CNNs that are inherently translation equivari-
ant, but not designed to tackle rotations. In this paper,
we first demonstrate that in the presence of rotation in-
stances in videos, the performance of existing trackers is
severely affected. To circumvent the adverse effect of ro-
tations, we present rotation-equivariant Siamese networks
(RE-SiamNets), built through the use of group-equivariant
convolutional layers comprising steerable filters. SiamNets
allow estimating the change in orientation of the object in
an unsupervised manner, thereby facilitating its use in rel-
ative 2D pose estimation as well. We further show that
this change in orientation can be used to impose an addi-
tional motion constraint in Siamese tracking through im-
posing restriction on the change in orientation between two
consecutive frames. For benchmarking, we present Rota-
tion Tracking Benchmark (RTB), a dataset comprising a
set of videos with rotation instances. Through experiments
on two popular Siamese architectures, we show that RE-
SiamNets handle the problem of rotation very well and out-
perform their regular counterparts. Further, RE-SiamNets
can accurately estimate the relative change in pose of the
target in an unsupervised fashion, namely the in-plane ro-
tation the target has sustained with respect to the reference
frame. Code and data will be made available at https:
//github.com/dkgupta90/re-siamnet.

1. Introduction
The task of visual object tracking with Siamese net-

works [1, 28], also referred as Siamese tracking, trans-
forms the problem of tracking into similarity estimation be-
tween a template frame and sampled regions from a can-
didate frame. Siamese trackers have recently gained pop-
ularity in the field of visual object tracking, especially be-
cause of their strong discriminative power obtained from

Figure 1: Example demonstrating rotation non-equivariance
in regular CNN models used in object tracking, ψθ(f(·)) 6=
f(ψθ(·)). Here f(·) and ψθ(·) denote the neural network
encoding function and rotation transform, respectively.

similarity matching. This is the primary reason most of
the state-of-the-art trackers are based on this framework
[1, 11, 18, 19, 28].

Although Siamese trackers are generally shown to work
well, they are still prone to failure under challenges such as
partial occlusion [16], scale change [27] or when one of the
two inputs is rotated.

This paper focuses on handling the adverse affects of in-
plane rotation of objects on the performance of Siamese
trackers. Object rotation is considered to be amongst the
hardest challenges of tracking with no effective solution
took. date. It can commonly occur in real-life scenarios, es-
pecially when the camera records from the top, as in drones,
where either the object is rotating or the camera itself. Ego-
centric videos are another example, where large head rota-
tions can cause the target to rotate.

The CNN architectures used in Siamese trackers are not
inherently equivariant to in-plane rotations of the target.
The implication is that the model may perform well on ob-
ject orientations that are represented in the training set, but
may fail on other previously unseen orientations. This hap-
pens because the latent encoding obtained from the network
for such cases might not be representative of the input im-
age itself. Example demonstrating this issue is shown in
Figure 1. Further, even if it were equivariant, the cross-
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correlation step in traditional Siamese trackers would still
fail to perform an accurate matching between the template
and candidate images due to rotational shift between them.

A straightforward approach to enforce learning of ro-
tated variants is to use training datasets where in-plane ro-
tations occur naturally or through data augmentation. How-
ever, as highlighted in [17], there are several limitations of
data augmentation. First, such procedures would require
learning separate representations for different rotated vari-
ants of the data. Second, the more variations are consid-
ered, the more flexible tracker model needs to be to capture
them all. This means a significant increase in training data
and computational budget. Further, such an approach would
make the model invariant to rotations, thus making the pre-
dictions unreliable when the target is surrounded by similar
objects, e.g., tracking a fish in a school of fishes.
This paper aims at incorporating the property of rotation
equivariance in the existing Siamese trackers. This built-in
feature would then allow the trackers to capture the rota-
tion variations from the start itself without the need of ad-
ditional data augmentation. Rotation equivariant networks
have been studied widely in the context of image classifi-
cation [3, 4, 33, 34, 35]. Drawing inspiration from these
works, we introduce rotation equivariance for the task of ob-
ject localization in videos. We exploit the concept of group-
equivariant CNNs [3], and use steerable filters [34] to make
the Siamese trackers equivariant to rotations. This way of
incorporating rotation equivariance induces built-in sharing
of weights among the different groups of rotations and adds
an internal notion of rotation in the model (referred further
as RE-SiamNet).

Interpreting the template image as the static memory of
the tracking model, RE-SiamNets know beforehand how the
encoding should be represented for a discrete set of rota-
tions. In the absence of other challenges such as illumina-
tion variation and occlusion, the target appearance would
match exactly at one of the discrete rotations, and is ex-
pected to contain only small errors for other intermediate
angles. This property increases the discriminative power
of the trackers towards differences in orientation (in-plane
rotation) of the target. Beyond this, RE-SiamNet can be
used for relative 2D pose estimation of objects in videos,
interchangeably also referred in this paper as relative orien-
tation estimation of objects. RE-SiamNets are equivariant
to translations and rotations, and these properties combined
with the structure of Siamese networks allow capturing the
change in pose of the target in 2D. Further, we propose
an additional motion constraint on the rotational degree of
freedom and demonstrate that it allows to obtain better tem-
poral correspondence in videos.

It is important to note that most current datasets, espe-
cially in tracking, contain very limited to no instances of
rotation. Thus, for benchmarking the performance of mod-

els in presence of in-plane rotations, we present Rotating
Object Benchmark (ROB), a set of videos focusing on in-
plane rotations. Annotations include bounding boxes of the
target object as well as its orientation in every frame. To
further summarize, the contributions of this paper are:

• We give a brief introduction to equivariant convolu-
tions networks. We then extend the theory to ob-
tain rotation-equivariant Siamese architectures (RE-
SiamNets) that feature in-plane rotation equivariance.

• We show that RE-SiamNets estimate the relative
change in 2D pose of any rotating object in a unsu-
pervised manner. Further, we introduce an additional
motion constraint to improve temporal correspondence
in videos.

• For benchmarking, we present Rotating Object Bench-
mark (ROB), a novel dataset comprising sequences
with significant in-plane rotations of the target.

• Through incorporating in two existing Siamese track-
ing methods, we show that rotation equivariance can
provide significant improvements in tracking perfor-
mance and accurately estimate the orientation changes.

2. Related Work
Siamese tracking. Object tracking aims at estimating

the trajectory of an arbitrary target in a video given only
its initial state in a video frame [15]. Most of the recent
object tracking algorithms use Siamese networks and track
the object based on similarity matching [6, 8, 10, 25, 30, 32,
37]. Such algorithms estimate a general similarity function
between the feature representations learned for the target
template and the candidate search region in a given frame.

The first Siamese trackers, SINT [28] and SiamFC [1],
used twin subnetworks with shared parameters and calcu-
lated dot product similarities between the feature maps of
the template and the candidate frame. Held et al. [13] intro-
duced a detection-based Siamese tracker in which the sim-
ilarity function was modeled as a fully-connected network.
They applied extensive data augmentation for learning a
generalized function for multiple object transformations.
Valmadre et al. [29], introduced CFNet which expanded
SiamFC using a differentiable correlation filter layer. All
of these trackers were able to get good performance in
terms of object deformation compared with the trackers
without online updating, but were not suitable in fast track-
ing situations. Some of the subsequent methods such as
[12, 19, 31, 39] discarded online updating, and turned to
learn a robust feature representation instead. This allowed
the aforementioned methods to perform high speed tracking
using Siamese networks.

Challenges of tracking. There are several challenges
encountered in visual object tracking that can affect the per-
formance of the designed tracking algorithms. A detailed
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study highlighting some of the most important challenges
was presented in [26]. These include illumination variation,
in-plane and out-of-plane rotations of the target, occlusion,
clutter and confusion due to several similar objects, among
others. With recent large-scale training datasets such as La-
SOT [7] and TrackingNet [22], and state-of-the-art deep
learning trackers, several of these challenges can be ad-
dressed up to a high degree of accuracy. For example, track-
ers such as SiamRPN++ [18] and DiMP [2] exhibit strong
discriminative power with the use of deep CNN backbones,
and have been found to tackle most of the challenges. How-
ever, some challenges such as occlusion and target rotation
still remain to be solved. Recent works related to tackling
occlusion tracking are [11] and [16]. In this paper, we focus
on the challenge of target rotation.

Equivariant CNNs. Recently, several works have tried
to directly incorporate equivariance into the network’s ar-
chitecture to capture various transformations. In this paper,
we focus on rotation-equivariant CNNs which has gained
popularity in image classification [5, 4], texture classifica-
tion [21], boundary detection [35] and image segmentation
[17]. Dieleman et al. [5] included 4 operations into existing
networks to enrich both the batch- and feature dimension
with their transformed versions. Cohen et al. [3] firstly
introduced group-convolutional layers where feature maps
resulting from transformed filters were treated as functions
of the corresponding symmetry-group. However, in this
method the computational cost was directly proportional to
the group size, and this issue was resolved with steerable
filters [4, 34]. A detailed study providing a general theory
of equivariance across various existing methods is provided
in [33]. In this paper, we study rotation equivariance in the
context of object tracking.

In real-life scenarios, tracking a target object is very
challenging, especially since it can undergo transformations
beyond translation, such as in-plane and out-of-plane ro-
tations, occlusion and scale change. Unless the network
has an internal mechanism to handle these transformations,
the template matching similarity can degrade significantly
in a Siamese network. Recent Siamese trackers [18, 38]
have implicitly or explicitly focused on making the track-
ers translational equivariant, i.e. a translation of the input
image must result in the proportional translation of the cor-
responding feature space. The importance of translation
equivariance is to reduce the positional bias during training,
so that location of the target is easier to recover from the
feature space. SiamRPN++ [18] proposed a training strat-
egy which removes the spatial bias introduced in non fully-
convolutional backbones. Further, [38] showed that existing
tracking models induce positional bias, which breaks strict
translation equivariance. Sosnovik et al. [27], introduced
scale-equivariant Siamese trackers which is crucial when
the camera zooms its lens or when the target moves into

depth. We argue that in-plane rotations is also an impor-
tant challenge in tracking, especially when the videos are
recorded using drone cameras, other videos recorded from
top view, cameras mounted on rotating objects and egocen-
tric videos. To the best of our knowledge, rotation equivari-
ance in the context of tracking has never been studied, and
we address it in this paper.

3. Rotation Equivariant CNNs
We first provide some basic background knowledge on

equivariance and rotation equivariance in CNNs required to
formulate our tracker. For a more general overview we refer
the interested reader to [34].

Equivariance.The property of equivariance requires
functions to commute with the actions of a symmetry group
acting on its domain and codomain. For any given trans-
formation group G, a mapping function f : X −→ Y is
equivariant if it satisfies

f(ψYg (x)) = ψYg (f(x)) g ∈ G, x ∈ X, (1)

where ψ(·)
g denotes a group action in the respective space.

For invariance, ψ(·)
g will be an identity mapping.

For clarity, we take translation equivariance as an exam-
ple. In this example, f stands for the convolutional neural
network function and ψg denotes the translation group. Ex-
ample actions from this group include for example, moving
one pixel left, or one towards right, or an action compris-
ing shift of several pixels. In this manner, an infinite num-
ber of actions can be defined within the translation group.
Making the network equivariant to translations leads to re-
duced sample complexity and facilitates generalization of
the model against translational variations.

It is important to note that there are several other trans-
formations beyond translation that can be built in the model
to improve robustness, if the effects of these transformations
are present in the data and the task. Examples include rota-
tions, reflections and scale change. For generalization over
any of these transformations, equivariance needs to be en-
forced on the respective transformation group. In this work
we focus on rotation equivariance.

Rotation equivariance. One of the more robust ways
of enforcing rotation equivariance in CNNs is through the
use of steerable filters [34]. Steerable filter CNNs (SFC-
NNs) extend the notion of weight sharing from the trans-
lation group to rotations as well. For rotation equivariance
with steerable filters, the network must perform convolu-
tions with different rotated versions of each filter. In this
case weight sharing helps the model to generalize better.

Steerable filters not only facilitate efficiently computing
responses for an arbitrary number of discrete filter rotations
Λ, but they also exhibit strong expressive power as well. A
filter Ψ is rotationally steerable if its rotation by an arbitrary
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Figure 2: Schematic representation of RE-SiamNet typically designed for object tracking. On the template head, multiple
equidistant rotated variants of the original template image are used.

angle θ can be expressed in terms of a fixed set of atomic
functions [9, 34]. In our network, we employ circular har-
monics ψjk defined as

ψjk(r, φ) = τj(r)e
ikφ, (2)

where φ ∈ (−π, π] and j = 1, 2, . . . , J allows to control the
radial part of the basis functions. Further, the (r, φ) refers
to transformed version of (x1, x2) in polar coordinates and
k ∈ Z denotes the angular frequency. The benefit of circular
harmonics is that now we can simply express rotations on
ψjk as a multiplication with a complex exponential,

ρθψjk(x) = e−ikθψjk(x). (3)

Note that for clarity purpose, we express ψjk(·) as ψjk(x).
Each learnt filter is then constructed as a linear combina-

tion of the elementary filters,

Ψ(x) =

J∑
j=1

K∑
k=0

wjkψjk(x), (4)

with weights wjk ∈ C. For rotation by θ, the composed
filter can be steered through phase manipulation of the ele-
mentary filters,

ρθΨ(x) =

J∑
j=1

K∑
k=0

wjke
−ikθψjk(x). (5)

A single orientation of the filter can be obtained by taking
real part of Ψ, denoted as ReΨ(x).

4. Rotation Equivariant Siamese Trackers
4.1. Proposed Formulation

For trackers that rely on similarity matching with
Siamese networks, the resultant heatmap h(z, x) is

h(z, x) = f(z) ∗ f(x), (6)

where z and x denote the template image and the candidate
frames, respectively, f(·) is the encoding function of the
Siamese network, and ∗ denotes the convolution operation.

Figure 2 presents the schematic representation of our
RE-SiamNet framework for object tracking. Architec-
turally, we start from and modify the basic SiamFC [1]
model due to its simple design. The basic SiamFC com-
prises the following modular layers: input, convolutional
layers, and a cross-correlation of the outputs from the two
Siamese heads. For our rotational Siamese tracker, we re-
place these layers with rotation equivariant modules. Fur-
ther, we introduce a group max pooling module that se-
lects the cross-correlation encoding for the most appropriate
orientations among the multiple heatmaps generated in our
setup. Details related to these modules follow below.

Rotation equivariant input. The candidate head of the
network takes a single search image as input. However, the
template head is modified to not just take one template im-
age as an input, rather a set of its Λ rotated variants defined
by the set Z, where Z = {z1, z2, . . . , zΛ}. Instead of tak-
ing all possible rotation versions Z of the template target,
we could also first compute the feature f(z) of the original
target, then rotate f(z). In theory, this is supported by rota-
tion equivariant networks. In practice, however, the spatial

4



resolution of f(z) is very low, typically 6×6 or 7×7 pixels.
As a result, there will be artifacts at the corners and edges
because of the crudeness of the transformation. Instead, it
yields more accurate feature maps if, when creatingZ in the
first frame, we first rotate the whole frame (not just the tar-
get) centering about the target, and then crop. Since this is
only performed on the target branch, it can be pre-computed
during the inference phase.

Each input image I , as stated above, comprises C chan-
nels, where each channel is represented as Ic and c ∈
{1, 2, . . . , C}. This input is then convolved with Ĉ rotated
filters ρθΨ

(1)
ĉc , where ĉ ∈ {1, 2, . . . , Ĉ}. Based on Eq. 5, the

resultant features obtained before applying nonlinear activa-
tion will be

y
(1)
c̃ (x, θ) = Re

C∑
c=1

J∑
j=1

Kj∑
k=0

wĉcjke
−ikθ(Ic ∗ ψjk)(x), (7)

where the filters are then rotated variants at equidistant ori-
entations θ represented by the set Θ = {0,Λ, . . . , 2πΛ−1

Λ }.
The bias term β

(1)
ĉ and nonlinearity σ are then applied to

obtain the feature map at the first layer ζ(1)
ĉ .

Rotation equivariant convolutions. Feature maps re-
sulting from Eq. 7 are processed further using group con-
volutions, generalizing spatial convolutions over a wider set
of transformation groups. Similar to the first layer, steerable
filters are defined on the group as

y
(l)
ĉ (x, θ) =Re

C∑
c=1

∑
φ∈Θ

∑
j,k

wĉcjk,θ−φe
−ikθ(

ζ(l−1)
c (·, φ) ∗ ψjk)(x). (8)

The additional index θ−φ introduced in Eq. 8 for the weight
tensor facilitates the group convolution operation along the
rotation dimension. It involves transforming the functions
on the group through rotating them spatially.

Rotation equivariant pooling. The output of the last
group convolutional layer is further processed through pool-
ing over the rotation dimension. Unlike the conventional
classification tasks, pooling is not performed along the spa-
tial dimension to preserve the rotation equivariance.

Rotation equivariant cross-correlation. From the two
subnetworks of the Re-SiamNet module, we obtain two sets
of feature maps, {φ(z)} and φ(x), where {φ(z)} is the set
containing feature maps at Λ orientations. Next, {φ(z)} and
φ(x) are convolved to obtain {ĥ(z, x)}, a set of Λ heatmaps,
where hi(z, x) = φ(zi) ∗ φ(x). Next, {ĥ(z, x)} is pro-
cessed with a global maxpooling operation to obtain the fi-
nal output heatmap h(Z, x). The global maxpooling opera-
tion identifies the maximum value in {ĥ(z, x)} and selects
the feature map that contains it.

By introducing the aforementioned modules, we obtain
the rotation equivariant Siamese tracker. Again, we empha-
size that the tracker is equivariant to in-plane rotations, as
out-of-plane rotations require knowledge of the 3D scene to
be integrated in the network. Next, we describe the training
and inference of rotation equivariant Siamese trackers.

4.2. Constructing RE-SiamNet Framework

We outline below the steps to design RE-SiamNet frame-
work using the rotation equivariant modules described in
the earlier section.

1. Identify the precision of the tracker in terms of dis-
criminating between different orientations of the ro-
tational degree of freedom. We consider here Λ ro-
tation groups, based on which RE-SiamNets would
be perfectly equivariant to angles defined by the set
Θ = {(i− 1) · 360/Λ}Λi=1.

2. Define the non-parametric encoding φ(·) based on ex-
isting Siamese trackers. Based on the choice of φ(·),
the discriminative power of trackers varies.

3. Replace all the convolutional layers of φ(·) with the
rotation-equivariant modules 1.

4. Instead of a single convolution to generate h(z, x),
Λ convolutions are performed to generate Λ different
heatmaps.

5. Perform Global max-pooling over the feature maps to
generate h(Z, x), which is then processed to localize
the target.

Note that depending on the choice of the tracker head,
processing operation on h(Z, x) can differ. For example,
for trackers such as SINT [28] and SiamFC [1], target in-
stance from the previous frame is fitted at different scales
and aspect ratios, and the best among them is chosen. For
other trackers such as SiamRPN [19] and SiamRPN++ [18],
a region-proposal module is added that regresses the bound-
ing box using a neural network head. In our tracking archi-
tecture, rotation equivariance needs to be only maintained
up to h(Z, x), thus it can work with any of these methods.

5. Unsupervised Relative Rotation Estimation
Unsupervised 2D pose estimation. The inherent design

of RE-SiamNets allows to obtain an estimate of the relative
change of 2D pose of the target in a fully unsupervised man-
ner. This information can be obtained from the result of the
group maxpooling step. Let i ∈ {1, 2, . . . ,Γ} denote one of
Λ orientations of the template image. Then, i is the number
of rotation groups by which the pose of the template differs
from that of its appearance in the candidate image, if:

h(Z, x) = ĥ(zi, x) = group-maxpool({h(z, x)}). (9)
1For implementing rotation-equivariant modules in this pa-

per, we use the e2CNN Pytorch library [33] available at
https://github.com/QUVA-Lab/e2cnn
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The difference in pose expressed in terms of rotational angle
θdiff is then i · 360/Γ. Assuming that the actual in-plane
rotation of the target is θc, the error in prediction in degrees
is bounded as |θdiff − θc| ≤ 360

2Λ . Thus, for larger values of
Λ, error in the estimation of pose decreases.

Rotational Motion Consistency. An important advan-
tage is that RE-SiamNets provide a novel motion constraint
that can be used to improve temporal correspondence in
object tracking. To reiterate, Siamese trackers are mostly
based on similarity matching with only weak temporal cor-
respondence introduced through localizing the search area
in any candidate frame around the target location in the pre-
vious frame and penalizing the changes in translation and
scale between two consecutive frames. With RE-SiamNets,
we explore the applicability in improving the temporal con-
sistency through imposing restrictions on the rotational mo-
tion. This is achieved during the selection of θopt ∈ Θ
among the Λ orientations. Let θt,opt = θt,i, where θt,i refers
to the ith orientation in frame t. For the next frame, rather
than selecting θt+1,opt from the full set Θ, a constraint can
be imposed such that θt+1,opt ∈ {θi}. Index i here is con-
strained to the set {it,opt − γ, . . . , it,opt − 1, it,opt, it,opt +
1, . . . , it,opt + γ} such that γ is the maximum change in
number of orientations allowed in either directions between
two consecutive frames. This constraint ensures that the
orientation does not change by more than γ groups between
two successive frames.

6. Rotating Objects Benchmark (ROB)
State-of-the-art benchmarks mostly do not contain rota-

tion annotations. To evaluate RE-SiamNets as well as to
enable future benchmarking on rotation sensitive tracking,
unsupervised rotation estimation and rotation stabilization.
We present Rotating Objects Benchmark (ROB) consisting
of real world video sequences with large-scale variations in
in-plane rotation of target objects.

ROB dataset is a collection of short video clips compris-
ing multiple objects in diverse scenarios, where the target
object undergoes rotation due to a rotating camera or/and
an in-plane rotation of the object itself. In each video, the
camera moves around the objects, capturing its different an-
gles of rotation. The dataset consists of 35 video sequences
with over 10,000 annotated frames and 15 object categories,
ranging from a wide range of real-world scenarios such as
livestock monitoring, cycling and aeroplanes.

Sequences from ROB dataset are densely annotated in
a semi-automated manner, with each frame providing ob-
jects location using bounding box coordinates, as well as
information about its orientation with respect to the frame.
To annotate orientation change, a one-head arrow is drawn
along one of the axes of target in the first frame, and con-
sistently followed in rest of of the frames. This allows to
compute the orientation change between the appearances of

the target in any two frames of the sequences.

7. Experiments
We validate rotation equivariant Siamese trackers in

tracking and estimation of relative 2D orientation changes.
We first compare with the non-rotation equivariant version
of the trackers, including SiamFC and SiamFCv2 [1] and
SiamRPN++ [18]. The proposed design philosophy, how-
ever, is general and any Siamese tracker can benefit. More-
over, we compare with DiMP [2] that attains SOTA results
on standard tracking benchmarks.

Training. All rotation equivariant variants of SiamFC
are trained on the GOT-10k [14] training set. To train
SiamRPN++, we trained a rotation equivariant version of
ResNet50 architecture on ImageNet. The SiamRPN++
model was then trained using this backbone on sets of
COCO [20], ImageNet DET [24], ImageNet VID and
YouTube-BoundingBoxes Dataset [23]

Evaluation. To evaluate how well the proposed RE-
SiamNets perform in presence of frequent in-plane rota-
tions, we test them on ROB, Rot-OTB100 and Rot-MNIST
datasets. Rot-OTB100 dataset is built by rotating each
frame of OTB100 videos by 0.5 degree with respect to its
previous frame. Rot-MNIST involves superposition of 3-5
MNIST digits on GOT-10k image backgrounds, and the dig-
its translate and rotate randomly but in a smooth manner.
Details related to the generation of these two datasets, as
well as results on ROT-MNIST are provided in the supple-
mentary section of this paper. To demonstrate that adding
RE-SiamNets do not degrade the performance of trackers
with respect to other challenges, we test them on tracking
benchmarks that include OTB100 [36] and GOT-10k [14].

Implementation Details To design RE-SiamNets, we
adapt the existing models by replacing the regular CNN
layers with rotation equivariant layers and using a group-
pooling layer to output features at single orientation for ev-
ery input. These rotation equivariant modules are added
using the e2cnn pytorch library [33]. For base Siamese
trackers, we use SiamFC [1], its variant SiamFCv2, and
SiamRPN++ [18]. Here and henceforth, we use the prefix
‘RE-’ to refer to the rotation equivariant version of a tracker.

For most experiments presented in this paper, we use RE-
SiamFC. The base tracker SiamFCv2 differs from SiamFC
in terms of the filter sizes and the number of convolutional
layers. The former comprises only 4 convolutional layers
with filter sizes of 9, 7, 7 and 6. The reason behind choos-
ing this variant is to experiment with models involving larg-
ers filters, since these are known to work well for rotation
equivariant CNNs [33]. Full details on the architecture of
SiamFC and SiamFCv2 are provided in th supplementary
section of this paper. We further point out that unless specif-
ically differentiated, we will occasionally refer SiamFC and
SiamFCv2 under the same name of SiamFC. We experiment
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Figure 3: Example frames from 3 sequences of ROB dataset showing the ground truth bounding box (blue), and predictions
obtained using SiamFC[1](green) and RE-SiamFC using 8 rotation groups (red). Further, blue and red arrows show the
ground truth pose estimate and the prediction obtained using RE-SiamFC, respectively.

with rotation groups of Λ = 4, 8, 16 for SiamFC and Λ = 4
for SiamRPN++.

All RE-SiamNet implementations described in this pa-
per are trained using stochastic gradient descent method.
The methods follow the same training configurations as
those of their base trackers. Exceptions include training
of RE-SiamFC with R16 for 150 epochs using batch size
of 16. Further, the rotation equivariant ResNet50 backbone
was trained on ImageNet for only 50 epochs due to limited
computational time. All models were trained on machines
equipped with either 1 or 4 GPU Titan X GPUs. Details on
optimization can be found in the supplementary material.

7.1. Rotation Equivariance in Tracking

Rot-OTB100. Table 4 presents the results for tracking.
Adding rotations in the tracked sequences makes tracking
considerably harder. Thus, compared to the performance
obtained on standard OTB100, the precision and success
scores for SiamFC drop by 24.2% and 26.3%, respectively.
Further, for SiamRPN++, these scores drop by 23.5% and
28.0%, respectively. Even with just 4 rotational groups RE-
SiamNet outperforms both variants of SiamFC comfortably.
Importantly, rotation equivariant Siamese trackers are no-
tably better than standard trackers trained on data with addi-
tional rotation augmentations. Adding rotation equivariance
brings improvements even to deep siamese trackers such as
SiamRPN++ [19] and yields competitive performance com-
pared to the state-of-the-art DiMP18 and DiMP50 [2]. Ad-
ditional plots on AUC for precision and success scores are
further provided in the supplementary section of the paper.

ROB. We benchmark rotation equivariance also on natu-

Model Type Succ Pr

SiamFC [1]

- 0.315 0.523
R4 0.360 0.629
R8 0.423 0.676

SiamFCv2

- 0.288 0.473
R4 0.348 0.622
R8 0.425 0.678
R16 0.423 0.688

SiamFCv2 aug 0.317 0.541

SiamRPN++ [18] - 0.461 0.634
SiamRPN++ R4 0.485 0.679

DiMP18 [2] - 0.429 0.643
DiMP50 [2] - 0.447 0.668

Table 1: Performance scores (success rate ‘Succ’ and
precision ‘Pr’ of OPE) for object tracking using differ-
ent Siamese trackers with regular CNNs as well as RE-
SiamNets on Rot-OTB100 dataset. Further, ‘aug’ refers
to inclusion of rotation augmentation during training of the
tracker model.

ral in-plane rotations on the ROB dataset, see Figure 4. It
shows the performance plots obtained on ROB dataset us-
ing SiamFCv2, SiamRPN++ and their RE-SiamNet equiv-
alents. We make similar observations as in Rot-OTB100.
Adding rotation equivariance makes both SiamFC and
SiamRPN++ more capable to handle natural rotations and
overall, the precision and success rates improve. We pro-
vide qualitative examples in Figure 3, showcasing the ben-
efits of inducing rotation equivariance in Siamese trackers.
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Figure 4: Performance curves for ROB dataset obtained us-
ing SiamFCv2 and RE-SiamNet with different choices of
equivariant rotation groups.

ROB Rot-OTB100
Type Range SR0.5 SR0.7 SR0.5 SR0.7

Baselines
±π

4
0.25 0.25 0.25 0.25

±π
8

0.125 0.125 0.125 0.125
± π

16
0.062 0.062 0.0625 0.062

R4 ±π
4

0.57 0.66 0.61 0.73

R8
±π

8
0.55 0.64 0.60 0.73

±π
4

0.71 0.82 0.79 0.87

R16
± π

16
0.10 0.14 0.16 0.32

±π
8

0.15 0.21 0.22 0.38
±π

4
0.31 0.46 0.38 0.51

Table 2: Performance values for RE-SiamFC with R8 on the
task of 2D relative pose estimation for ROT-OTB100 and
ROB datasets. Scores reported are in terms of success rate
(SR) at IoU thresholds of 0.5 and 0.7. Reported baselines
are computed assuming equal probability for each orienta-
tion in the dataset.

OTB100 and GOT-10k. To further analyze if the ro-
tation equivariant formulation can have adverse effects on
other tracking challenges, we compared the results of RE-
SiamFC with 4 rotation groups to that of the base Siamese
model on OTB100 and GOT-10k. For both the cases, drops
in performance scores were within 2% of the original val-
ues. Such minor drop is expected given that the rota-
tion equivariant trackers use lesser number of channels for
the same number of parameters, thereby exhibiting slightly
lower discriminative power in general.

7.2. Unsupervised Pose Estimation

We experimentally demonstrate that RE-SiamNets can
extract the relative 2D pose of the target over time, using
the first frame as a reference. We provide results in Table 2
on the Rot-OTB100 and ROB datasets. In this experiment,
we measure the success rate SRα as the fraction of frames
for which the actual and predicted orientations are within
the specified range at an IoU threshold of α.

We observe that rotation equivariant trackers recover the
relative orientation change with average accuracy above
60%, well beyond the random baseline. With 8 rotational
groups, RE-SiamNets can even predict angles within a con-

Orientation Estimation Tracking
Type Range SR0.3 SR0.5 SR0.7 Pr Succ

R8 ±π
4

0.72 0.79 0.87 0.42 0.68
c-R8 0.75 0.80 0.88 0.43 0.69

R16 ±π
4

0.34 0.38 0.51 0.42 0.69
c-R16 0.36 0.42 0.54 0.43 0.69

Table 3: Accuracy of orientation estimation and perfor-
mance scores for object tracking on Rot-OTB100 dataset
obtained for RE-SiamFC with (denoted with prefix ‘c-’) and
without imposing constraint on rotational motion. Here,
‘Range’ refers to permissible change in orientation between
two consecutive frames of any video, ‘SRX ’ refers to suc-
cess rate at an IoU threshold of X , and ‘Pr’ and ‘Succ’ de-
note OPE scores for precision and success rate for tracking.

fidence of ±π8 at a similar accuracy. For finer rotations
within± π

16 there is a significant drop, with accuracies rang-
ing between 0.1 and 0.3. The problem is that by increasing
the rotation groups, we trade the parameters required for
better tracking with parameters that are required for finer
rotational bases, thus reducing the final discriminative ca-
pacity of our trackers. We include some qualitative exam-
ples in Figure 3 to show the orientations predicted by our
rotation equivariant tracker.

7.3. Rotational-based Motion Constraints

Last, we explore briefly whether the predictions of orien-
tation estimates can be used to improve tracking by an ad-
ditional constraint to encourage smooth orientation changes
over time. We present results in Table 3. Adding the rota-
tion constraint on rotational motion has a modest yet pos-
itive influence on tracking performance, while the benefits
regarding robustness are higher (data not shown). We con-
jecture that introducing other types of equivariance to place
more constraints on the attainable types of motion in videos
would yield even more robust trackers.

8. Conclusions
This paper addresses the challenge of in-plane rotations

of the target in visual object tracking. We demonstrated that
frequent in-plane rotations can have an adverse effect on
conventional trackers, for which data augmentations do not
suffice. To address this, we introduce rotation equivariant
Siamese trackers, specifically for SiamFC and SiamRPN++,
that can adapt to rotation changes at no extra parameter cost
due to shared weights. Results show that rotation equiv-
ariant Siamese trackers can track accurately under the pre-
sense of artificial and natural rotations, they can accurately
recognize the relative orientation changes of the target with
respect to the first reference frame, and they can even be
made more robust by placing additional rotational motion
constraints.
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A. Datasets
We provide here the details related to the three datasets

that have been used to benchmark the performance of RE-
SiamNets in this paper. The three datasets are Rot-MNIST,
Rot-OTB100 and ROB sequences. Details follow below.

A.1. Rot-MNIST

Rot-MNIST, as the name implies, comprises rotating
MNIST digits on backgrounds of natural images extracted
from the original GOT-10k [14] training set. Each video
comprises MNIST digits floating around and the target digit
rotates. Both the motions, translation as well as rotation, are
governed by Brownian equation. The training set comprises
2500 sequences exhibiting only translational motion, while
the test set contains 100 sequences comprising translation as
well as rotation. Each sequence of the training set as well as
the test set contains 100 frames. Randomly sampled frames
from 3 sequences of the test set are shown in Figure 5.

A.2. Rot-OTB100

Rot-OTB100 is a dataset built through rotating the image
frames of the original OTB100 dataset. For this purpose,
each sequence is taken and starting from the first frame,
every frame is rotated 0.5 degrees counter-clockwise with
respect to its previous frame. For keeping the dataset struc-
ture similar to that of OTB, we do not use rotated bounding
boxes, rather the regular ones. The bounding box is cho-
sen in a way such that the rotated version of the original
bounding box (obtained after rotating) fits tightly within it.
Thus, Rot-OTB100 is a testset with exactly same number of
sequences as OTB100, except that the frames are rotated.

A.3. ROB

Details of Rotating Object Benchmark (RTB) as well as
example sequences have already been shown in the main
paper. All the 35 videos have been acquired at 10 fps and
comprise 300-500 frames each.

B. Implementation details
B.1. Models

The discussion on the model details are provided below
with respect to the three benchmarking datasets as outlined
earlier.

Rot-MNIST. For Rot-MNIST, we develop a reduced ro-
tation equivariant variant of SiamFC [1], comprising 999K
paramters. RE-mSiamFC differs in terms of the size of the
kernels used. Comparisons are made with the non-rotated
equivariant of the same model comprising equal number

10



Figure 5: Sampled frames from 3 sequences of the test set of Rot-MNIST dataset. The backgrounds are taken from sequences
of GOT-10k dataset [14]. Further, to avoid clutter around the target, we have avoided labelling the bounding boxes in the
examples above.

of parameters. For 4 rotational groups (R4), the resultant
model comprises 5 convolutional layers, comprising 62, 75,
157 and 160, and kernels of sizes 3 × 3 in all the layers.
Note that the number of channels for any choice of rota-
tional groups is made such that the number of parameters
is approximately 999K. Further, all except the last layer are
followed by Batchnorm and ReLU activation layers. Fi-
nally, pooling is used across the rotational groups to obtain
a single set of feature maps from the last layer.

The baseline model for comparison is the non-rotational
equivariant version comprising similar number of param-
eters. This model is referred as mSiamFC. The model is
similar to that of RE-mSiamFC, except two differences.
First, all rotation equivariant modules are replaced with
non-rotation equivariant counterparts. Further, the 4 layers
comprise 96, 128, 256 and 256 in the four layers, respec-
tively.

Rot-OTB100 and ROB. Compared to Rot-MNIST, Rot-
OTB100 and ROB datasets are relatively more complex and
larger models are needed. In this regard, we build two ro-
tation equivariants of SiamFC, referred as RE-SiamFC and
RE-SiamFCv2. RE-SiamFC has an architecture similar to
that of the original SiamFC [1], and comprises 2.33M pa-
rameters approximately. The 5 convolutional layers com-
prise 72, 160, 240, 240 and 160 channels, respectively. The
respective kernel sizes are 11 × 11 and 5 × 5 in the first
two layers, and 3 × 3 in the last three layers. The choice
of padding, stride and pooling is similar to that of SiamFC
[1], but rotation equivariant. The number of channels stated
above are for R4. For R8 and R16, these are scaled down

keeping the number of parameters same.
RE-SiamFCv2 is similar to RE-SiamFC, except that it

uses larger kernel sizes, thus reduced number of channels,
thereby keeping the number of parameters equal to 2.33M.
It uses 4 convolutional layers, and for R4, these layers are
composed of 64, 96, 128 and 163 channels, respectively.
The corresponding kernel sizes are 9× 9, 7× 7, 7× 7 and
6 × 6, respectively. Accordingly, the number of channels
for R8 and R16 are 49, 71, 85, 118 and 36, 48, 60, 80, re-
spectively. All except the last convolutional batchnorm and
ReLU activation layers, and pooling is performed across the
different groups after the last convolutional layer.

B.2. Extension: Training details.

To train RE-mSiamFC, RE-SiamFCv1 and RE-
SiamFCv2, we follow a training procedure similar to the
default SiamFC [1]2 Each model was trained for 50 epochs
with batch size of 8 on a single NVIDIA GTX GPU. For
R16 variants, we use batch sizes of 8 and 150 epochs.
The initial learing rate is set to 1e-2 and it is decayed to
1e-5 during the course of training. The weight decay and
momentum terms are set to 1e-4 and 0.9, respectively. For
training the models, we use GOT-10k training set.

For RE-SiamRPN++, we follow training details similar
to the baseline SiamRPN++ model. We separately trained a
ResNet50 architecture using rotation equivariant modules.
This backbone was trained for 50 epochs using batch sizes
of 128. The details of model training are same as the stan-

2For SiamFC, we use the Pytorch code available at
https://github.com/huanglianghua/siamfc-pytorch.
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Type Range SR0.1 SR0.3 SR0.5 SR0.7 SR0.9

R4 ±π
4

0.52 0.56 0.61 0.73 0.95

R8
±π

8
0.48 0.52 0.60 0.73 0.95

±π
4

0.67 0.72 0.79 0.87 0.98

R16
± π

16
0.12 0.14 0.16 0.32 0.87

±π
8

0.17 0.20 0.22 0.38 0.88
±π

4
0.30 0.34 0.38 0.51 0.92

Table 4: Performance scores measured in terms of success
rate at different overlap thresholds for orientation estima-
tion using SiamFCv2 for Rot-OTB100.

dard training of SiamRPN++, as specified in pysot3 py-
torch library.

C. Extension: Results
We show here a few additional results related to our ex-

periments. Figure 6 shows a few examples of predictions
made by SiamFCv2 as well as the equivalent RE-SiamFCv2
variant. Further, we provide precision and success plots of
OPE for SiamFCv2-R8 on Rot-OTB100 in Figure 7. Fur-
ther, we show success rates at different overlap thresholds
on different orientation estimates in Table 4.

3For SiamRPN++ and its rotation equivariant modifications, we use
pysot library available at https://github.com/STVIR/pysot.
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Figure 6: Results on Rot-OTB100 obtained with SiamFC-Netv2 (green) and RE-SiamFCv2 with R8 (red).
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Figure 7: Performance curves for Rot-OTB100 dataset ob-
tained using SiamFCv2 and RE-SiamNet with different
choices of equivariant rotation groups. All networks cho-
sen here used 233K optimization parameters.
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