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Spectral Smoothing Unveils Phase Transitions
in Hierarchical Variational Autoencoders

Adeel Pervez 1 Efstratios Gavves 1

Abstract
Variational autoencoders with deep stochastic hi-
erarchies are known to suffer from the problem of
posterior collapse, where the top layers fall back
to the prior and become independent of input. We
suggest that the hierarchical VAE objective ex-
plicitly includes the variance of the function pa-
rameterizing the mean and variance of the latent
Gaussian distribution which itself is often a high
variance function. Building on this we generalize
VAE neural networks by incorporating a smooth-
ing parameter motivated by Gaussian analysis to
reduce higher frequency components and conse-
quently the variance in parameterizing functions.
We show this helps to solve the problem of pos-
terior collapse. We further show that under such
smoothing the VAE loss exhibits a phase transi-
tion, where the top layer KL divergence sharply
drops to zero at a critical value of the smooth-
ing parameter that is similar for the same model
across datasets. We validate the phenomenon
across model configurations and datasets.

1. Introduction
Variational autoencoders (VAE) (Kingma & Welling, 2014)
are a popular latent variable model for unsupervised learn-
ing that simplifies learning by the introduction of a learned
approximate posterior. Given data x and latent variables
z, we specify the conditional distribution p(x|z) by param-
eterizing the distribution parameters by a neural network.
Since it is difficult to learn such a model directly, another
conditional distribution q(z|x) is introduced to approximate
the posterior distribution. During learning the goal is to
maximize the evidence lower bound (ELBO), which lower
bounds the log likelihood, log p(x) ≥ Eq(z|x)

[
log p(x|z)+

log p(z) − log q(z|x)
]
. In their simplest form, the genera-
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tive model p(x|z) and the approximate posterior q(z|x) are
Gaussian distributions optimized in unison.

A natural way to increase the modeling capacity of VAE is
to incorporate a hierarchy of stochastic variables. Such mod-
els, however, turn out to be difficult to train and higher levels
in the hierarchy tend to remain independent of input data –
a problem termed posterior collapse. Posterior collapse in
VAEs manifests itself by the latent distribution tending to
fall back to the prior. With hierarchical VAEs the effect is
found to be more pronounced in the top layers farther from
the output. For the purpose of the paper and for clarity of ex-
position, we focus on the simplest extension of hierarchical
variational autoencoders where stochastic layers are stacked
serially on top of each other (Burda et al., 2016; Sønderby
et al., 2016) , p(x, z) = p(x|z1)p(zL)

∏L−1
i=1 p(zi|zi+1) and

q(z|x) = q(z1|x)
∏L−1
i=1 q(zi+1|zi). The intermediate dis-

tributions in this model are commonly taken to be Gaus-
sian distributions parameterized by neural network func-
tions, so that p(zi|zi+1) = N (zi|µ(zi+1), σ(zi+1)), where
µ(z), σ(z) are neural networks computing the mean and
variance of the Gaussian distribution. We refer to them
as vanilla hierarchical variational autoencoders. For each
stochastic layer in this model there is a corresponding KL
divergence term in the objective given by

E[KL(q(zi|zi−1)||p(zi|zi+1)]. (1)

As described later, expression 1 can be easily decomposed to
show an explicit dependence on the variance of the parame-
terizing functions µ(zi), σ(zi) of the intermediate Gaussian
distribution. We further show the KL divergence term to
be closely related to the harmonics of the parameterizing
function. For complex parameterizing functions the KL di-
vergence term has large high frequency components (and
thus high variance) which leads to unstable training causing
posterior collapse.

Building on this, we suggest a method for training the sim-
plest hierarchical extension of VAE that avoids the problem
of posterior collapse without introducing further architec-
tural complexity (Maaløe et al., 2019; Sønderby et al., 2016).
Given a hierarchical variational autoencoder, our training
method incorporates a smoothing parameter (we denote this
by ρ) in the neural network functions used to parameterize
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the intermediate latent distributions. The smoothing is done
such that expected values are preserved, the higher frequen-
cies are attenuated and the variance is reduced. Next, the
gradients computed with the smooth functions are used to
train the original hierarchical variational autoencoder.

For the construction of the smoothing transformations for
VAEs with Gaussian latent spaces we use of ideas from the
analysis of Gaussian spaces. We analyze the stochastic func-
tions in vanilla hierarchical VAEs as Hermite expansions
on Gaussian spaces (Janson et al., 1997). The Ornstein-
Uhlenbeck (OU) semigroup from Gaussian analysis is a set
of operators that we show to smoothly interpolate between
a random variable and its expectation. The OU semigroup
provides the appropriate set of smoothing operators which
enable us to control variance and avoid posterior collapse.

We further show that by smoothing the intermediate param-
eterizing functions µ(z), σ(z) in the proposed manner, the
KL divergence of the top layer sees a sudden sharp drop
toward zero as the amount of smoothing is decreased. This
behaviour is retained when we evaluate the KL divergence
on the original unsmoothed variational autoencoder. This
behaviour is reminiscent of phase transitions from statistical
mechanics. Our experiments suggest that the phenomenon
is general across datasets and commonly used architectures.
Furthermore, the critical value of the smoothing parameter
ρ at which the transition occurs is fixed for a given model
configuration and varies with stochastic depth and width.

We make the following contributions. First, we establish a
connection between higher harmonics, variance, posterior
collapse and phase transitions in hierarchical VAEs. Second,
we show that by using the Ornstein-Uhlenbeck semigroup of
operators on the generative stochastic functions in VAEs we
reduce higher frequencies, and consequently the variance,
mitigating posterior collapse. We extensively corroborate
our findings experimentally and with simple architectures
we obtain likelihoods in CIFAR-10 that are competitive to
methods requiring complex architectural solutions.

2. Spectral Smoothing for Variational
Autoencoders

2.1. Analysis on Gaussian spaces

The analysis of Gaussian spaces studies functions of Gaus-
sian random variables. These are real-valued functions de-
fined on Rn endowed with the Gaussian measure. Many
functions employed in machine learning are instances of
such functions: decoders for variational autoencoders, as is
the case in this work, and generators for generative adver-
sarial networks being two examples.

By way of summary, the main facts we use from this field
are that a function on a Gaussian space can be expanded

in an orthonormal basis, where the basis functions are the
Hermite polynomials. This orthonormal expansion is akin
to a Fourier transform in this space. The second fact is that
the coefficients of such an expansion can be modified to
reduce the variance of the expanded function by applying
an operator from the Ornstein-Uhlenbeck semigroup of op-
erators. Next, we give a brief introduction. For more details
on Gaussian analysis we refer to (Janson et al., 1997).

Gaussian Spaces: Let L2(Rn, γ) be the space of square in-
tegrable functions, f : Rn → R, with the Gaussian measure
γ(z) =

∏
iN (zi|0, 1). Given functions f, g in this space,

the inner product is given by 〈f, g〉 = Eγ(z)[f(z)g(z)].

Basis functions for L2(R, γ): Taking the space of univari-
ate functions L2(R, γ) , it is known that the polynomial
functions φi(z) = zi are a basis for this space. By a
process of orthonormalization we obtain the normalized
Hermite polynomial basis for this space. The first few Her-
mite polynomials are the following: h0(z) = 1, h1(z) =

z, h2 = z2−1√
2
, . . ..

Basis functions for L2(Rn, γ): Letting α ∈ Nn be a multi-
index, the basis functions for L2(Rn, γ) are obtained by
multiplying the univariate basis functions across dimension,
hα(z) =

∏
i hαi

(zi).

Hermite expansion: A function in L2(Rn, γ) can be ex-
pressed as f =

∑
α∈Nn f̂(α)hα, where f̂(α) are the

Hermite coefficients of f and are computed as f̂(α) =
〈f, hα〉 = Eγ(z)[f(z)hα(z)]. By the orthnormality of the
basis functions, Plancherel’s theorem connects the norm of
f with the Hermite coefficients as 〈f, f〉 =∑α f̂(α)

2.

Ornstein-Uhlenbeck (OU) Semigroup: Given a parame-
ter ρ ∈ [0, 1] and a Gaussian variable z, we construct a
correlated variable z′ as z′ = ρz +

√
1− ρ2zω, where

zω ∼ N (0, 1) is a random standard Gaussian sample. The
OU semigroup is a set of operators, denoted Uρ and param-
eterized by ρ ∈ [0, 1]. The action of Uρ on f at z is to
average the function values on correlated z′s around z,

Uρf(z) = Ez′|z[f(z′)] = Ezω [f(ρz +
√
1− ρ2zω)] (2)

The action of the Uρ operators on the Hermite expansion of
f(z) is to decay Hermite coefficients according to their de-
gree, Uρf(z) =

∑
α∈Nn ρ|α|f̂(α)hα. where |α| =∑i αi.

If z is reparameterized as z = σε1 + µ, the correlated OU
sample is given by z′ = σ(ρε1 +

√
1− ρ2ε2) + µ, where

ε1, ε2 are standard Gaussian variables. This can also be
expressed in terms of z as

z′ = ρz + (1− ρ)µ+ σ
√
1− ρ2ε2, (3)
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2.2. Hermite expansions for VAEs

We propose a new training procedure for the vanilla hier-
archical variational autoencoder that builds upon Hermite
expansions of Gaussian functions and properties of the OU
semigroup. In the context of hierarchical variational au-
toencoders, the Gaussian function f is the generative model
µi(zi+1) and σi(zi+1) that receives as inputs the latent vari-
able zi+1 to return the Gaussian latent variable of the next
layer, zi ∼ N (µi(zi+1), σi(zi+1)).

We make use of the following properties of the OU semi-
group to construct Gaussian functions of lower variance.

The first property, described in the following two proposi-
tions, is that the OU semigroup of operators interpolates
between a random variable (ρ = 1) and its expectation
(ρ = 0). Parameter ρ controls the extent of interpolation.

Proposition 1 The operators Uρ retain the expected value
of the operated function, E[f ] = E[Uρf ].

Proposition 2 The operators Uρ interpolate between a ran-
dom variable and its expectation. In particular, as ρ→ 1,
Uρf = f . and as ρ→ 0, Uρf = E[f ]

The second property is that the new random variable Uρf(z)
has lower variance compared to the original variable f(z)
and is in general a smoother function than f(z).

The smoothing properties of the operator Uρ can be under-
stood by examining the Hermite expansion of Uρf . First,
we note that we can express the expectation and variance
of a function f in terms of its Hermite coefficients. Specif-
ically, E[f ] = f̂(0) and Var(f) = E[(f − E[f ])2] =

E[(f − f̂(0))2] =
∑
α:|α|>0 f̂(α)

2, which follows from
Plancherel’s theorem. Replacing f with Uρf and using the
Hermite expansion of Uρf from equation 2, the mean re-
mains the same, E[Uρf ] = ρ0f̂(0) = f̂(0), and variance
reduces like

Var[Uρf ] = E[(Uρf − E[f ])2] = E[(f − f̂(0))2]
=

∑
α:|α|>0

ρ2|α|f̂(α)2. (4)

Equation equation 4 indicates that the contribution to the
variance by f̂(α) decays by an amount ρ2|α| when ρ ∈
(0, 1). By using the Ornstein-Uhlenbeck semigroup Uρ
on the generative model µi(zi+1) and σi(zi+1) we obtain
smoother VAE functions of lower variance by dampening
higher frequency components.

Algorithm. In essence, OU-smoothed variational autoen-
coders are similar to variational autoencoders, save for
applying the OU semigroup to the latent distributions
p(zi|zi+1) of the generator to compute gradients during

training only. Specifically, we apply these operators to
the functions parameterizing the mean and variance of
the latent Gaussian distributions. For each distribution
p(zi|zi+1) we substitute N (zi|µi(zi+1), σi(zi+1)) with
N (zi|Uρµi(zi+1), Uρσi(zi+1)). The new functions result
in latent distributions with parameters with lower variance
but the same expected value relative to the conditional input
latent distribution. In practice, we compute Uρµi(zi+1) and
Uρσi(zi+1) by Monte Carlo averaging. As for a function
f , Uρf = Ez′|z[f(z′)], where z′ are the correlated samples,
we estimate the expectation by Monte Carlo averaging over
z′. Experiments show that 5 to 10 samples suffice.

It is important to emphasize that the substitution of the lower
variance functions for parameterizing the distributions is
only done when computing gradients during training. All
evaluations, training or test, are still done on the original
hierarchical variational autoencoder model. Thus, the new
training procedure has an additional computational cost only
for the intermediate distributions in the generator, propor-
tional to the number of correlated samples during training.

Alternative parameterization. We can also apply the
OU semigroup to different functions in the variational au-
toencoder. Applying Uρ to the ratio of the mean and vari-
ance functions, Uρ µi

σi
(zi+1), for instance, provides a con-

venient form to analyze the KL divergence in hierarchical
VAEs, as we shall see next. Moreover, the OU semigroup
operators can be applied on approximate posterior functions.
Experimentally, we observed little benefit and we left that
variant out of the comparisons.

Complexity. We apply the OU sampling operation only in
the intermediate stochastic layers in the generator network
of the smoothed VAE. We do not apply OU sampling in the
inference network. Also, we do not apply OU sampling in
the last stochastic layer of the decoder computing p(x|z1),
typically upsampled to match image dimensions in deep
VAEs for images. Overall, OU-smoothed VAEs are more
memory and parameter efficient than models like IWAE,
LVAE and BIVA, as also shown in our experiments (see
table 10).

3. KL Divergence Analysis
By casting the generative functions of variational autoen-
coders with Gaussian latent variables on Hermite basis, we
can analyze the KL divergence from equation 1 in terms
of the hierarchical VAE objective in terms of bias-variance
trade-off. The bias-variance trade-off arises by rewriting the
KL divergence in terms of the variance of the functions
µ(z), σ(z) parameterizing the intermediate distributions.
This variance is related to spectral complexity. Reducing
spectral complexity leads to a reduction in variance.
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For clarity, we start with two stochastic layers, z1 and z2,
and also assume that the standard deviation for p is fixed
and independent of z2, that is σ(z2) = σp. Without loss of
generality we think of z1 as a scalar. The general result for
multivariate z1 follows from summing for all dimensions.

We focus on the terms in the KL divergence including the
conditionals p(z1|z2), which are prone to causing collapse,

Eq(z1,z2|x)[log p(z1|z2)] = Eq(z1|x)Eq(z2|z1)[log p(z1|z2)],
(5)

where p(z1|z2) = N (z1|µp(z2), σp) and q(z1|x) =
N (z1|µq(x), σq(x)).
For Gaussian p we write equation 5 as
Eq(z1,z2|x)[− log

√
2πσ2

p − 1
2σ2

p
(z1 − µp(z2))2]. From the

inner term Eq(z1,z2|x)[(z1 − µp(z2))
2] we focus on the

quadratic µp(z2)2 which is expanded as

1

2σ2
p

Eq(z1,z2|x)[µp(z2)
2] =

1

2σ2
p

Eq(z1|x)[E[µp(z2)]
2 +Var(µp)] (6)

By Plancherel’s theorem we have

1

2σ2
p

Eq(z1,z2|x)[µp(z2)
2] =

1

2σ2
p

Eq(z1|x)

µ̂p(0)2 + ∑
α:|α|>0

µ̂p(α)
2

 . (7)

That is, for σp independent of z2 the KL divergence term
in the ELBO contains the variance of the parameterizing
function µp(z2).

In our proposal we replace µp(z2) by Uρ[µp(z2)] and the
right side of equation 7 becomes

1

2σ2
p

Eq(z1|x)[E[Uρµp]
2 +Var(Uρµp)] =

1

2σ2
p

Eq(z1|x)

µ̂p(0)2 + ∑
α:|α|>0

ρ2|α|µ̂p(α)
2

 , (8)

since E[Uρf ] = E[f ]. The new variance is of order O(ρ2).
Comparing this objective with the original VAE objective,
for the second term we get a bias proportional to the differ-
ence of the variance

bias =
1

2σ2
p

(Var(µp)−Var(Uρµp)).

Comparing equations 7 and 8 we see the bias to beO(1−ρ2).
In figure 4 in the appendix we show the reduction in gradient
variance with OU smoothing compared to regular VAEs.

More than 2 layers, σp dependent on z2, choice of ρ.
The analysis above assumes that σp is independent of z2. For
σp dependent on z2 we can repeat the analysis for the vari-
ance of (z1−µ(z2))/σ(z2) and for the ratio µ(z2)/σ(z2) by
expanding the square and considering the terms separately.

During training the decoder layers p(zi|zi+1) use samples
from the respective encoder layer q(zi+1|zi) and not the
previous decoder layers p(zi+1|zi+2). The bias-variance
decomposition when smoothing p(zi+1|zi+2) does not de-
pend on the bias-variance decomposition of the smoothing
on p(zi|zi+1). Thus, the analysis is easy to derive when
cascading multiple stochastic layers (L > 2).

The above analysis introduces a bias-variance trade-off.
Since we have a bias-variance trade-off, by throttling ρ
we are now in position to exchange some variance for some
bias. As a result, we can now train robustly and efficiently
deep stochastic architectures, even with very simple neural
network architectures. Experiments indeed show a con-
sistent behavior and phase transitioning as we change ρ.
Specifically, experiments corroborate that there exists a sin-
gle value of ρ for which models consistently undergoes
posterior collapse for different datasets given the same ar-
chitecture. Deriving this critical ρ that prevents collapse is
an interesting direction for future work.

4. Related Work
To increase the stochastic depth of VAEs (Kingma &
Welling, 2014; Rezende et al., 2014), Sønderby et al. (2016)
propose Ladder VAEs. With an architecture that shares a
top-down dependency between the encoder and the decoder,
Ladder VAEs allow for interactions between the bottom-
up and top-down signals and enable training with several
layers deep VAEs. Extending Ladder VAEs, Maaløe et al.
(2019) proposed the bidirectional-inference VAEs, adding
skip connections in the generative model and a bidirectional
stochastic path in the inference model.

Bowman et al. (2016) observed that the latent distribution
collapses to the prior in deep stochastic hierarchies – a phe-
nomenon now called posterior collapse. Posterior collapse
appears in different contexts including images or text, and is
strongly associated with the presence of powerful decoders,
be it LSTMs (Bowman et al., 2016) for text or strong au-
toregressive models for images (Oord et al., 2016), where
although the model may produce good reconstructions, it
does not learn a meaningful generative distribution. A preva-
lent hypothesis behind posterior collapse is that when the
decoder is strong enough to generate very low cross entropy
losses, the optimization may find it easier to simply set the
KL divergence term to 0 to minimize the ELBO (Bowman
et al., 2016). Making an association with probabilistic PCA,
Lucas et al. (2019b) hypothesize that posterior collapse is
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caused by local optima in the optimization landscape due to
high variance, even without powerful decoders. High vari-
ance was identified as a potential culprit also by (Sønderby
et al., 2016) for posterior collapse.

Several proposals have attempted to address posterior col-
lapse. Bowman et al. (2016); Higgins et al. (2017); Søn-
derby et al. (2016); Maaløe et al. (2016) anneal the KL diver-
gence between the approximate posterior to the prior from
0 to 1. This solution does not optimize the original ELBO
formulation and is shown (Yang et al., 2017; Chen et al.,
2016) to cause instabilities, especially with large datasets
and complex decoders. Kingma et al. (2016) introduce
the concept of free bits forcing a minimum KL divergence.
Razavi et al. (2019) proposed δ-VAEs, which constrain the
latent distribution to have a minimum distance to the prior.
He et al. (2019) monitor the mutual information between the
latent and the observed variable to aggressively optimize the
inference model before every model update. (Burda et al.,
2016) suggest that using a tighter multi-sample ELBO can
help alleviate collapse to some extent.

While some (Bowman et al., 2016; Sønderby et al., 2016)
suggested a connection between posterior collapse and vari-
ance reduction, no real solution using variance reduction
has been proposed. One reason may be the low variance
the reparameterization trick (Kingma & Welling, 2014;
Rezende et al., 2014) already offers. Empirically, while
the reparametrization is successful with producing low vari-
ance forward and backward propagations in shallow models,
it has not been enough for deeper and wider ones. An-
other reason suggested by the approach of this paper is that
variance appears as a side effect of spectral complexity. A
discrete version of the OU semigroup is used in Pervez et al.
(2020) for gradients for binary latent variable models.

To reduce the variance in reparameterization gradients,
Roeder et al. (2017) suggest removing a mean zero score
function term from the total derivative while Miller et al.
(2017) build a control variate using a linear approximation
for variance reduction. Burda et al. (2016) propose impor-
tance weighted gradients and Tucker et al. (2018) extend
Miller et al. (2017) to multiple samples to obtain an estima-
tor with improved signal-to-noise ratio. Other approaches
to increase the power of VAE models include normalizing
flows (Rezende & Mohamed, 2015), better posterior or prior
distributions (Tomczak & Welling, 2016), adding autoregres-
sive components (Gulrajani et al., 2017) or a combination
of both (Kingma et al., 2016).

We theoretically argue and empirically validate that damp-
ing higher frequency components, thus lowering variance,
allows for training deeper latent hierarchies while address-
ing posterior collapse. We rely on tools from the field of
analysis on Gaussian spaces, amenable to the analysis of
stochastic processes (Janson et al., 1997).

5. Experiments
We perform an extensive array of evaluations with state-
of-the-art benchmarks, methods, and architectures. Unless
stated otherwise, we use the same architectures in the respec-
tive comparisons for VAE with and without OU-smoothing.

Our primary focus is posterior collapse, a fundamental
problem, linked to high variance when stacking multiple
stochastic layers (Lucas et al., 2019a). We investigate OU-
smoothed VAEs in the context of posterior collapse and
compare with methods that help with it. Then, we evalu-
ate OU-smoothed VAEs on binary MNIST, OMNIGLOT
and CIFAR-10 with various convolutional and MLP archi-
tectures. We compute validation ELBOs with importance-
weighted samples (Burda et al., 2016) (L100 with 100 and
L5000 with 5000 samples).

5.1. Posterior collapse in Hierarchical VAEs

Posterior collapse happens when the approximate posterior
in the VAE falls back to the prior, yielding extremely low
KL divergence and “dying” stochastic neurons showing
consistently no activation no matter the input. With posterior
collapse the model effectively learns to ignore the encoder
or some portion thereof. Posterior collapse is observed in
models with powerful generators, such as autoregressive
models, and with models with deep stochastic hierarchies.
In hierarchical VAEs and for higher layers posterior collapse
is not simply a form of feature selection, as models suffering
from “dying” neurons also show bad validation ELBO, see
table 8 in the appendix.

We test OU-smoothed VAEs for posterior collapse on basic
MLP network architectures, using on the static and dynam-
ically binarized MNIST against various standard methods
for mitigating posterior collapse. Following (Burda et al.,
2016), we say a neuron is active when its activity variance
across a batch of inputs is more than 0.01.

Dynamic and Static MNIST. For dynamically binarized
MNIST we choose two models: the first is a 4 stochastic
layer model with 64,32,16,8 latent variables. Between any
two stochastic layers we add two deterministic layers of
512,256,128,64 units respectively from bottom to top. The
second model has 4 stochastic layers VAE with 40 units
per stochastic layer and 2 layers of 200 units per stochastic
layer. For static MNIST we only use the second model
described above. All models have a simple stacked archi-
tecture with no skip connections. We train the VAE with
the standard training method and OU-smoothed VAEs with
ρ ∈ {0.8, 0.9}.
We report the validation and the KL divergence curves of the
top stochastic layer, KL(q(z4|z3)||N (0, 1), in figure 2. For
the vanilla VAE the approximate posterior collapses imme-
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Figure 1. VAE KL divergence undergoes as a phase transition as the model as we decrease the amount of smoothing to recover the original
model at ρ = 1. The figure shows top layer KL divergence vs. ρ, where each point is a different model after 100000 steps of training with
a fixed ρ. The plots show the KL divergence values for the original unsmoothed model after training on the smoothed version. The left
figure shows this for same 4 stochastic (40 units per layer) layer MLP model on MNIST and OMNIGLOT. It can be seen that the critical
value where the KL divergence drops toward 0 is the same for both datasets on this model. The next two figures show phase transition for
a 3 stochastic layer (200 units per layer) MLP model on OMNIGLOT (middle) and a convolutional model (8x7x7 latent dimension) on
MNIST (right) showing that the phase transition becomes especially pronounced with the width of the latent layer.

diately and we obtain a poor validation ELBO. In contrast,
OU smoothing avoids posterior collapse by maintaining a
good KL divergence and a better validation ELBO.

It is worth noting that while posterior collapse is more visi-
ble in deeper stochastic models, OU smoothing can also be
applied to models with a single stochastic layer (see table 7
in the appendix).

Further comparisons. We compare against other meth-
ods designed to mitigate posterior collapse: KL annealing
(Kingma et al., 2016), free bits (Kingma et al., 2016) and
importance weighted objectives (Burda et al., 2016) with
the same architectures as above. For KL annealing the an-
nealing coefficient is set to 0 for the first 10,000 steps and is
linearly annealed to 1 over the next 500,000 steps. For free
bits, we apply the same free bits value to each stochastic
layer, as recommended in IAF (Kingma et al., 2016). The
free bits values are chosen from {0.5, 1.0, 2.0, 3.0}. We
find that training slows down considerably when using free
bits and values of free bits of ≥ 4.0 made training unstable.

We show results on dynamic MNIST in table 1, including
the total KL divergence, the top layer KL divergence as well
as the number of active units in each of the 4 layers. KL
annealing and free bits help in mitigating posterior collapse
for shallow hierarchies of stochastic variables, annealing
being more effective. Both methods lead to more active
units, especially in the lower levels, and a somewhat larger
top layer KL divergence than a standard VAE. However
these techniques are not very effective at overcoming col-
lapse in deeper hierarchies, which is the motivation of our
work. Compared to IWAE, KL annealing and free bits,
OU-smoothed VAEs maintain significant activity across the
layers, a considerably higher KL divergence in the top layer,
and in the end a better validation ELBO. Interestingly, un-
like OU-smoothed VAEs, existing methods seem to not only

lead to considerably fewer active units when moving higher
in the hierarchy (further away from the output layer), but
also the active units depend on the architecture (the 64-32-
16-8 variant maintains more active units). This suggests that
training dynamics and the architecture affect the extent of
posterior collapse with standard methods, while having less
of an effect with the proposed method.

We obtain similar results for static MNIST, see table 6 in
the appendix. We also experimented with combining OU-
smoothed VAEs with other posterior collapse mitigation
techniques. KL annealing with the 4 layer OU-smoothed
VAE improves validation ELBO, although with more com-
plex architectures or complex datasets like CIFAR-10, we
observed little benefit.

5.1.1. PHASE TRANSITIONS

We saw that attenuating the higher frequency components
of parameterizing functions by smoothing is a justifiable
mitigation against posterior collapse. Here we show that
as the amount of smoothing is reduced (as ρ approaches
1) to recover the original VAE gradients, the top level KL
divergence shows a sudden decline at a critical value of
the smoothing parameter. The sharpness of this decline
depends on the model configuration (stochastic layers, latent
dimension). On the other hand, our experiments suggest
that the sharpness of the decline is independent of dataset.

An example of this phenomenon is in figure 1 and more in
figures 5 and 6 in the appendix. We show the top layer KL
divergence after training for 100k steps with varying ρ for 3
different architectures. The phase transition becomes more
pronounced with greater stochastic dimension. Figure 3
further shows how OU smoothing prevents collapse across a
spectrum of stochastic depths and widths while maintaining
good validation performance.
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Table 1. Posterior collapse on dynamic MNIST. The table shows top layer KL divergence and active units (top-to-bottom) for various
method on the 4 stochastic layer models. The 64-32-16-8 latent dimension models have two layers of 512, 256, 128, 64 hidden units in
each stochastic layer respectively. The 40-40-40-40 latent dimension models have two layers of 200 units per stochastic layer. ‘+KL’
indicates KL annealing. All models were trained for 1M steps with the same hyperparameters.

Model V. ELBO (L100) Reconstruction KLD Top KLD Active Units Relative Activity (%)

IWAE (64-32-16-8) -84.46 -65.3 23.98 4.88 64-30-15-3 100-94-94-38
IWAE (40-40-40-40) -84.63 -65.5 23.98 1.18 40-37-4-0 100-93-10-0
VAE+KL (64-32-16-8) -84.6 -60.3 28.8 6.2 49-25-11-6 79-78-69-75
VAE+KL (40-40-40-40) -84.7 -60.8 28.07 1.13 40-15-6-1 100-38-15-2.5
VAE+Freebits (64-32-16-8) -85.5 -64.2 25.1 3.8 21-9-4-2 33-28-25-25
VAE+Freebits (40-40-40-40) -86.0 -65.8 23.6 2.46 18-8-2-1 45-20-5-2.5

OU-VAE (ρ = 0.95) (64-32-16-8) -81.6 -59.78 26.1 8.99 54-32-16-8 84-100-100-100
OU-VAE (ρ = 0.9) (64-32-16-8) -81.7 -60.0 25.6 9.56 43-32-16-8 67-100-100-100
OU-VAE (ρ = 0.95) (40-40-40-40) -84.4 -65.7 23.7 9.34 40-40-40-40 100-100-100-100
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Figure 2. Training 4 layer VAE models on static MNIST with
validation ELBO on the left and KL(q(z4|z3)||N (0, 1)) on the
right. The VAE shows posterior collapse, while OU-VAE avoids it
alongside improved validation ELBO.

5.2. Benchmark Comparisons

5.2.1. MNIST & OMNIGLOT

MLPs. We report test ELBO for MLPs for static and dy-
namic MNIST comparing with methods using their best
reported settings. As OU-smoothed VAEs scale easily up
to multiple stochastic layers, we experiment with 4 stochas-
tic layers for static MNIST, and 4 and 5 stochastic layers
for dynamic MNIST, with the same architecture details as
earlier.

Table 2. Test ELBO on static MNIST with MLP

Model ELBO

VAE (L=2) -86.05
VAE (L=1)+NF (Rezende & Mohamed, 2015) -85.10
IWAE (L=2) (Burda et al., 2016) -85.32
VampPrior (L=2) (Tomczak & Welling, 2017) -83.19

OU-VAE (L=4), L5000 -83.42

Table 3. Test ELBO on dynamic MNIST with MLP

Model ELBO

Ladder VAE (L=5) (Sønderby et al., 2016) -81.7
VampPrior (L=2) (Tomczak & Welling, 2017) -81.24

OU-VAE (L=4), L5000 -81.2
OU-VAE (L=5), L5000 -81.1

On static and dynamic MNIST, including IWAE (Burda
et al., 2016), VAE with normalizing flow (Rezende & Mo-
hamed, 2015), VampPrior (Tomczak & Welling, 2017), and
LVAE with 5 layers as well. We also compare with a VAE
with two stochastic layers, as we were unable to either im-
prove VAEs with more stochastic layers and we could not
find in the literature a reference of a vanilla VAE deeper
than 2 layers with better performance on this dataset. We
show the results for static MNIST in table 2 and for dynamic
MNIST in table 3. We observe that OU-smoothed VAEs
outperform other methods in both settings while relying on
relatively simple architectures.

Residual ConvNets. Last, we experiment with a more
complex ResNet architecture on MNIST and OMNIGLOT
and the same architecture structure as the MLP VAEs, with
up to 4 stochastic layers and 5 ResNet convolutional blocks
between stochastic layers (14× 14 features maps). We do
not employ stochastic skip connections between blocks. We
report results in table 5 in the appendix. In both experiments
we obtain competitive scores despite the simple architec-
ture, reaching -96.08 validation ELBO on OMNIGLOT,
compared to -97.65 and -97.56 for VAE and VampPrior.

5.2.2. CIFAR-10

Next, we experiment with ResNets of up to 6 stochastic
layers, intertwined with deterministic layers comprising 6
ResNet blocks on CIFAR-10. We used 100 feature maps for
all deterministic layers. The stochastic layers have 8 feature
maps of width 16 × 16. We also experiment with skip
connections between stochastic layers. We report results in
table 4 comparing with other deep VAE models.

We obtain an ELBO of 3.5 bpd without skip connections.
With skip connections we improve to 3.42 bpd on the 3-layer
architecture, or 3.39 when evaluated with 100 importance
samples. Compared to other deep VAE methods, we are on
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OU- OU- OU-

Figure 3. VAEs (top) exhibit suddenly many inactive units when increasing depth to 2 layers and width beyond 20 neurons, while
collapsing completely after 3 layers and 60 neurons. OU-smoothed VAEs (bottom) retain for nearly all cases full latent activity, while
maintaining similar ELBOs (not shown). Trained on MNIST for 100K steps for practical reasons (normal convergence if left training),
with 2 deterministic, 200-neuron tanh layers before every stochastic layer.

Table 4. Comparing bits per dimension, parameters and depths on
CIFAR-10. ‘OU-VAE+’ include stochastic skip connections.

Model BPD Layers Parameters

Vanilla feedforward networks, residual connections

OU-VAE, L1 3.5 3 9.95M
OU-VAE, L1 3.46 4 12.4M
OU-VAE, L1 3.43 6 16.8M
OU-VAE+, L1 3.42 3 9.95M
OU-VAE+, L100 3.39 3 9.95M

Feedforward networks, residual connections, shared weights
between encoder and decoder

LVAE (Maaløe et al., 2019) 3.60 15 72.36M
LVAE+ (Maaløe et al., 2019) 3.41 15 73.35M
LVAE+ (Maaløe et al., 2019) 3.45 29 119.71M
BIVA (Maaløe et al., 2019) 3.12 15 102.95M
VAE+IAF (Kingma et al., 2016) 3.11 – –
NVAE (Vahdat & Kautz) 2.91 – –

Feedforward networks, residual connections, norm-
alizing flow prior/autoregressive

Disc. VAE++ (Vahdat et al., 2018) 3.38 – –
NICE (Dinh et al., 2014) 4.48 – –
RealNVP (Dinh et al., 2017) 3.49 – –

par with the 15-layer Ladder VAE (LVAE) (Maaløe et al.,
2019), and comparable to the 15-layer LVAE+ (Maaløe et al.,
2019) architecture that adds skip connections to LVAE. Note
that OU-smoothed VAEs rely on much simpler architectures
with 5-10X fewer layers. The 3-layer OU-smoothed VAE
has about 7X fewer parameters than Ladder VAE. Consid-
ering further architectural innovations, as shown by NVAE
and VAE+IAF, can further boost performance and we leave
to future work.

We conclude that OU smoothing gives an efficient and accu-
rate option for training deep VAEs even with vanilla archi-
tectural choices.

5.3. Complexity

In our experiments, 5-10 OU samples suffice, similar to
IWAE, which also has a multi-sample objective. We do not
OU sample in the final stochastic layer, which is especially
important for deep VAEs as the last decoder layer is the
largest and heaviest one to match image dimensions. E.g.,
with 4 stochastic layers taking 5 samples we additionally re-
quire 5 times more memory for p(z2|z1), p(z3|z2), p(z4|z3),
but not p(x|z1). As in many architectures higher layers are
typically smaller, the total memory is significantly less than
5 times the memory requirement of vanilla VAE.

We quantitatively support our justification in table 10 in the
appendix with 4 and 6-layer models, using 5 deterministic
layers per stochastic layer with 100 units per layer and 5
OU or IWAE samples. The memory usage is the maximum
amount of used memory (batch size of 64). For LVAE and
BIVA we use code from the BIVA repository. We see that
all methods use a similar number of parameters (12-16M),
except for LVAE and BIVA with 3-6X as many parameters.
Save for regular VAE, OU-smoothed VAE requires the least
memory, 50% less than IWAE and 30-50% less than LVAE
and BIVA. We compare timings in table 9 in appendix. We
bear a small only extra cost (4.6 sec) compared to VAE (4.2
sec) per epoch, on par with IWAE (4.4 sec) that has actually
more parallel computations than us.

We conclude that the additional memory and computational
cost by the OU sampling is small and OU-smoothed VAE
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models are considerably smaller than IWAE, LVAE and
BIVA.

6. Conclusion
We present spectral smoothing for VAEs using the OU semi-
group, based on analyzing intermediate VAE functions as
Hermite expansions, using tools from the field of analy-
sis of Gaussian functions. By damping the high frequency
Hermite coefficients, we can now construct deep stochas-
tic models with reduced variance. Furthermore, we show
that casting the generative functions of VAEs with Gaussian
latents on a Hermite basis yields a bias-variance decompo-
sition to control the smoothing. We corroborate the theory
by an extensive array of experiments. The deep stochastic
models obtained with OU-smoothed VAEs show reduced
variance, perform on par with much larger state-of-the-art
models that rely on complex architectures to avoid collapse,
and can eliminate (almost) completely posterior collapse
even with very simple feedforward architectures. Impor-
tantly, we show the spectral smoothing in VAEs and variance
reduction connects to phase transitions.
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