
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Searching and Matching Texture-free 3D Shapes in Images

Liao, S.; Gavves, E.; Snoek, C.G.M.
DOI
10.1145/3206025.3206057
Publication date
2018
Document Version
Final published version
Published in
ICMR'18
License
Article 25fa Dutch Copyright Act

Link to publication

Citation for published version (APA):
Liao, S., Gavves, E., & Snoek, C. G. M. (2018). Searching and Matching Texture-free 3D
Shapes in Images. In ICMR'18: proceedings of the 2018 ACM International Conference on
Multimedia Retrieval : June 11-14, 2018, Yokohama, Japan (pp. 326-334). The Association
for Computing Machinery. https://doi.org/10.1145/3206025.3206057

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:09 Mar 2023

https://doi.org/10.1145/3206025.3206057
https://dare.uva.nl/personal/pure/en/publications/searching-and-matching-texturefree-3d-shapes-in-images(bc660d0b-1cb4-4bac-b213-c2ef43a7446d).html
https://doi.org/10.1145/3206025.3206057

Searching and Matching Texture-free 3D Shapes in Images
Shuai Liao

QUVA Lab, University of Amsterdam
s.liao@uva.nl

Efstratios Gavves
QUVA Lab, University of Amsterdam

egavves@uva.nl

Cees G. M. Snoek
QUVA Lab, University of Amsterdam

cgmsnoek@uva.nl

ABSTRACT
The goal of this paper is to search and match the best rendered view
of a texture-free 3D shape to an object of interest in a 2D query
image. Matching rendered views of 3D shapes to RGB images is
challenging because, 1) 3D shapes are not always a perfect match
for the image queries, 2) there is great domain difference between
rendered and RGB images, and 3) estimating the object scale versus
distance is inherently ambiguous in images from uncalibrated cam-
eras. In this work we propose a deeply learned matching function
that attacks these challenges and can be used for a search engine
that finds the appropriate 3D shape and matches it to objects in 2D
query images. We evaluate the proposed matching function and
search engine with a series of controlled experiments on the 24
most populated vehicle categories in PASCAL3D+. We test the capa-
bility of the learned matching function in transferring to unseen 3D
shapes and study overall search engine sensitivity w.r.t. available
3D shapes and object localization accuracy, showing promising
results in retrieving 3D shapes given 2D image queries.

KEYWORDS
3D-2D Matching; 3D Shape Retrieval; Texture-free
ACM Reference Format:
Shuai Liao, Efstratios Gavves, and Cees G. M. Snoek. 2018. Searching and
Matching Texture-free 3D Shapes in Images. In ICMR ’18: 2018 International
Conference on Multimedia Retrieval, June 11–14, 2018, Yokohama, Japan.
ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3206025.3206057

1 INTRODUCTION
The goal of this paper is to search and match the rendered view
of a texture-free 3D shape to an object of interest in a 2D image.
Matching shapes to image content has a long tradition in content-
based image retrieval, e.g. [17, 27], where queries have been entered
by sketching [13], by combining sketch and keywords [8], or by
a provided 3D shape [1]. We build on this heritage and query a
dataset of 3D shapes based on an image, but we also recognize and
localize an object of interest in the image and match the object to
its corresponding 3D model, so as to arrive at an alignment of the
3D shape in the 2D image as precise as possible, see Fig. 1.

Searching and matching a 3D shape to an object in a real-world
2D image is challenging because: (a) finding the 3D shape that has
the exact shape as the objects in the image is not always possible,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICMR ’18, June 11–14, 2018, Yokohama, Japan
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5046-4/18/06. . . $15.00
https://doi.org/10.1145/3206025.3206057

Figure 1: This paper strives to find the rendered view of a
texture-free 3D shape that best matches an object of interest
in a 2D query image. This matching is challenging because
the 3D shapes are not always perfect for the image query
(aeroplane, boat, car), there is an obvious domain difference
between the appearance of the RGB object and the texture-
free rendered image, and the intrinsic camera parameters
are unknown. We propose and evaluate a deeply learned
matching function that attacks these challenges and can be
used as a search engine that finds and matches 3D shapes to
objects in 2D images.

even when large 3D shape libraries, e.g. [4], are available, (b) match-
ing a rendered image from a 3D shape with a real image is known to
suffer from domain shift: the real image may have different texture,
lighting condition, shadow and complex natural background, and
(c) estimating the object scale versus distance is inherently ambigu-
ous in images taken from uncalibrated cameras, where the camera
intrinsic matrix is unknown. In this paper we study the influence
of these challenges with respect to the searching and matching of
3D shapes in images.

1.1 Related Work
We are inspired by recent progress, mostly reported in computer
vision venues, were several sophisticated methods for 3D to 2D
object matching have been presented, e.g. [2, 3, 9]. Most methods
rely their matching on exemplar classifiers, which are trained to
learn an absolute relation between particular 3D model views and

Poster Paper Session ICMR’18, June 11-14, 2018, Yokohama, Japan

326

https://doi.org/10.1145/3206025.3206057
https://doi.org/10.1145/3206025.3206057

particular RGB appearances via texture-sensitive features, such as
HOG [2, 3]. In the seminal work of [2], for example, Aubry et al.
rely on 3D models of chairs from image search engines to align 3D
models to 2D objects. The authors propose an LDA-based exemplar
classifier trained on HOG features of textured 3D models to detect
the 3D model and the pose that best matches real chair images. Un-
fortunately, the exemplar classifiers are trained for specific models,
textures, and specific poses, namely they learn a specific classifier
for each 3D model, its different poses and RGB appearances sepa-
rately. Hence, novel 3D models or poses cannot be accommodated
without retraining, limiting the applicability of the learned model
for general-purpose 3D shape retrieval.

In [18] a method is described for aligning perfectly matched 3D
shapes of IKEA furniture on RGB living room images, be it they
rely on parts that must be defined and annotated a priori on the
perfect matched 3D shapes. In [21] 3D models are reduced to 3D
cuboids, for object categories with box-like geometry, like cars, thus
making inference easier. These methods learn absolute relations
between textured 3D models and the respective 2D objects available
at training. Having textured 3D models can be beneficial, e.g. if the
texture of the object in the 2D image happens to be similar. But it
can also limit the algorithm, by biasing it to retrieving 3D models
that only share similar textures regardless of apparent differences
in shape geometry. Even with large-scale 3D shape datasets such as
[4], finding similar textured 3D models that match objects as they
appear in images in the wild is still limited by the stored variation
in the dataset. What is more, the texture quality and style is not
necessarily consistent, as they are typically designed by different
3D artists. Consequently, texture-based methods are constrained
to textures already observed, and they are unable, nor intended, to
transfer their knowledge to new 3D models or poses at test time.
An alternative [3] is to rely on depth RGB images to learn the 3D-
to-2D matching function, limiting, however, the applicability of the
algorithm to RGB-D cameras only. Unlike these approaches, our
focus is a search engine of the best matching 3D shapes given an
object in a 2D images. Thus, we are also interested in transferability,
even for unseen 3D shapes. In this work we focus on texture-free
3D shapes and standard RGB images as queries.

To alleviate the dependence on texture appearance, Choy et al.
[5] first render textured 3D models into background-free images
from a set of discretized viewpoints. Then, they compute synthe-
sized detection templates from the extracted HOG features from
these rendered views. At inference time, a detector is applied to
2D images in a sliding window fashion with multiple scales. When
the detector is activated, the pose of 3D shape as well as its 2D
location is transferred to the target object. Similar to [5] we also aim
for localization and matching of objects in images, but rather than
striving to limit the dependence on texture, we prefer to exclude
texture completely.

In a recent work from the multimedia retrieval community,
Junkert et al. [11] limit the dependency on domain shift of the
generated textures of 3D shapes by relying on a neural transfer
learning scheme rather than HOG descriptors. Their synthesized
high quality image renderings of 3D shapes with texture, back-
ground and casted shadows. Once these synthesized images are
obtained, they extract intermediate feature from an Inception [26]
model pre-trained on ImageNet. Given a real image at test time, also

represented by the same features, they search for the best matching
3D model by a k nearest neighbor search. As they assume all real
and rendered objects have been centralized in the image, they are
only able to return viewpoint angles without the location of ob-
jects. Similar to [11] we also exploit the transfer abilities of neural
networks. Rather than matching the feature representations of tex-
tured 3D model renderings and the query image as is, we prefer to
learn the matching function between an image and a texture-free
3D shape.

1.2 Contributions
We propose a search engine that given a query object image, local-
izes and matches the object to the appropriate 3D shape. Different
from related approaches, we directly operate on texture-free 3D
shapes, enabled by a novel learned matching function. The learned
function is a shallow convolutional neural network, merged from a
deep two-stream network, encapsulating the relative differences
between texture-free 3D shape views and RGB objects. As we are
interested in understanding the possibilities as well as the limita-
tions of searching and matching texture-free 3D shapes in images,
we rely on a controlled experimental setup on a large and diverse
set of texture-free vehicle categories and sub-categories from PAS-
CAL3D+ [29], where we evaluate its sensitivity w.r.t. available 3D
shapes and object localization accuracy.

2 TOWARDS A 3D-TO-2D SEARCH ENGINE
We cast the problem of searching and matching a 3D shape to
a 2D object in an image as a supervised optimization problem.
In the offline phase, we assume we have a library of 3D shapes
дtrain = {д1,,дK } describing a variety of object categories and
their fine-grained sub-categories, where K is the total number of
fine-grained categories. At query time, we start from a single RGB
image containing an object of interest, that is either provided or
detected automatically. We denote the appearance of the object
with x , and in practice it can be the feature activations from one of
the layers of a deep convolutional neural network. For the object of
interest we assume there is an optimal, albeit hypothetical texture-
free 3D model д∗x . Given a previously unseen image x at query
time, our goal is to search among the set of possible 3D shapes and
their poses, дtest ,ϕtest , and place the optimal (д∗x ,ϕ∗x) on top. To
match an RGB image with a texture-free rendering, we introduce a
geometric compatibility functionG(·), which we want to maximize:

ϕx = arg max
ϕ

G(ϕ;x ,xCAD ,дtestk ,ϕtestCAD) , (1)

where xCAD is the rendered image given a texture-free 3D shape
дtestk and pose transformation ϕCAD . Theдtestk ,ϕtestk can be equiv-
alent to the shapes observed at training, or expanded to contain
more 3D shapes or their poses, дtraink ⊆ дtestk ,ϕtraink ⊆ ϕtestk . We
summarize the data flow of our search engine in Fig. 2 and detail
its main components next.

2.1 Searching and Matching 3D Shapes
Object Recognition and Localization In the literature on 3D to
2D matching, the recognition and localization of the object is of-
ten provided in the form of ground truth, e.g. [5]. The rationale

Poster Paper Session ICMR’18, June 11-14, 2018, Yokohama, Japan

327

Object	
Recognition and
Localization

Searching 3D
Model

Matching
Rendered View

Rendering
3D Shape Dataset

Ranking

Searching and Matching Texture-free 3D Shapes in Images ICMR’18, June 2018, Yokohama, Japan

Object	
Recognition and
Localization

Searching 3D
Model

Matching
Rendered View

Rendering

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

3DV
#116

3DV
#116

3DV 2017 Submission #116. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

3. 3D-to-2D Object Alignment
We assume we have a library [30, 29, 5] of 3D CAD

models gtrain = {g1,, gK} describing a variety of ob-
ject categories and their fine-grained sub-categories, where
K is the total number of fine-grained categories. Each of
the 3D CAD models gk can undergo various pose trans-
formations. These include extrinsic parameter transforma-
tions, i.e. azimuth a, elevation e, in-plane rotation �, cam-
era distance d, as well as intrinsic parameter transforma-
tions, i.e. principle offset (u, v), focal length f , and view-
port m. We aggregate the pose transformation parameters
to �train

CAD = {�1
CAD, ...,�M

CAD}, where M is the number of
poses during training. In the following, to reduce notation
clutter we drop the superscript “train” whenever it can be
derived from the context.

Following [12], the formulation of the projection matrix
takes the following form:

P =

�
�

mf 0 u
0 mf v
0 0 1

�
�

� �� �
intrinsic parameters

·
�
Rot(a, e, �)� �� �

3�3

Trans(a, e, d)� �� �
3�1

�

� �� �
extrinsic parameters

,

where we assume a calibrated camera, namely the focal
length and viewport are fixed to f = 1, m = 2, 000 re-
spectively [30]. Each set of �CAD values produces a new
3D model instantiation. Similarly, for the hypothetical 3D
model g�x there exists an optimal transformation vector ��

x.
At inference, we start from a single RGB image contain-

ing an object of interest. We denote the appearance of the
object with x, and in practice it can be the feature activa-
tions from one of the layers of a deep convolutional neural
network. For the object of interest we assume there is an op-
timal, albeit hypothetical 3D model g�x. Our goal is, given
the previously unseen image x at test time to find the best
fit to the optimal (g�x,��

x) from a set of possible 3D CAD
models and poses, gtest,�test. These 3D CAD models and
poses can be equivalent to those observed during training,
or expanded to include new 3D models and poses.

We cast the problem of finding the best 3D model instan-
tiation as a matching optimization problem. Namely, we in-
troduce a geometric compatibility function G(·), which we
want to maximize:

�x = arg max
�

G(�; x, xCAD, gtest
k ,�test

CAD) , (1)

where xCAD is the rendered image given a 3D CAD model
gtest

k and pose transformation �CAD. The gtest
k ,�test

k

can be equivalent to the models observed at training, or
expanded to contain more 3D CAD models or poses,
gtrain

k � gtest
k ,�train

k � �test
k . We next describe how to

learn the geometric compatibility function.

3.1. Relative Geometric Compatibility

Ideally, we want to avoid learning an explicit mapping
from the appearance space to the geometric space. The rea-
son is that an explicit mapping would function well for the
3D model instantiations that are observed during training
but not generalize well for new 3D models. To this end we
define the geometric compatibility function as a differential
on the geometric space.

During training we have two images, x and xCAD, as
well as two rotation matrices, Rx and RCAD, one from the
real and one from the rendered image. We define our geo-
metric compatibility function as:

G�
rel � �� = g(Rx � RCAD) . (2)

According to eq. (2) �� � g(Rx � RCAD) is a function
of difference between two geometries expressed by Rx and
RCAD. Unfortunately, at testing time we cannot have Rx,
as this is what we are looking for. To this end we propose
to approximate the geometric compatibility with an approx-
imate geometric compatibility function, which receives as
inputs the appearance features of the RGB and the CAD
rendering, namely:

G�
rel � Grel � �x = f(x � xCAD) , (3)

In the spirit of [16], we define the approximate geometric
compatibility function f(·) in eq. (3) to be a separate neu-
ral network module, which we coin geometric differential
module. A geometric differential module is implemented
as a shallow convolutional neural network composed of two
layers. The first layer is convolutional with kernel size 1�1
and is fusing the activations from the two streams. The sec-
ond layer is a fully connected layer with a single output,
which approximates ��. Unlike the typical fully connected
layer which operates as a function approximator, the geo-
metric differential module approximates a function differ-
ential, see Fig. 2. The geometric differential module does
not output directly any rotation matrices Rx nor any 3D
model instantiations �x. Instead, it returns relative geomet-
ric compatibility values. They are relative, because they are
supposed to capture the difference of the RCAD from Rx,
and by extension the difference of �CAD from �x, solely
on the basis of the appearance features x and xCAD. Effec-
tively, the network learns to estimate directly the alignment
discrepancy between an RGB image and any 3D CAD ren-
dering, avoiding to compute the objects rotation matrix first.
This has two advantages.

First, the network does not directly associate the compat-
ibility score function in eq. (3) with the appearance of the
particular renderings at training time. In fact, the network
does not even make any strict assumptions regarding either
the texture appearance of the 3D CAD rendering, or the geo-
metric precision of the 3D model for the given RGB object.

3

3D Shape Dataset
Ranking

Figure 2: Data�ow for searching and matching texture-free 3D shapes in images. Our main innovation is in matching the
rendered view, where we learn to match a texture-free rendering with an RGB image patch.

quantify the sensitivity of our approach w.r.t. the quality of the
(amodal) object recognition and localization using both (perturbed)
groundtruth as well as a automatic object detection.

Searching 3D Model Once we have obtained the (�ne-grained)
object category and its enclosing box, we simply query the database
of texture-free 3D shapes and forward the selected 3D shape to the
rendering stage.

Rendering Each of the 3D shapes �k can undergo various view-
point transformations and 3D-to-2D projection. The viewpoint
transformation include rotation and translation that controlled by
extrinsic parameter, i.e. azimuth a, elevation e , in-plane rotation
� , camera distance d , whereas intrinsic parameters, i.e. principle
o�set (u,�), focal length f and viewport m, de�nes the camera
intrinsic matrix for 3D-to-2D projection. We aggregate the pose
transformation parameters to �tr ain

CAD = {�1
CAD , ...,�

M
CAD }, where

M is the number of poses seen during training. In the following, to
reduce notation clutter we drop the superscript “train” whenever
it can be derived from the context.

Following [10], the formulation of the projection matrix takes
the following form:

P =

266664
mf 0 u

0 mf �
0 0 1

377775| {z }
Intrinsic Matrix

·
"
Rotation(a, e,�)| {z }

3⇥3

Translation(a, e,d)| {z }
3⇥1

#
| {z }

Extrinsic Matrix

,

where we assume a calibrated camera, namely the focal length and
viewport are �xed to f = 1,m = 2, 000 respectively [29]. Each set of
�CAD values produces a new 3D model rendering. Similarly, for the
hypothetical 3D model �⇤x there exists an optimal transformation
vector �⇤x .

Matching Rendered View Ideally, we want to avoid learning
an explicit mapping from the appearance modality to the geometric
modality. The reason is that an explicit mapping would function
well for the 3D model rendering that are observed during training
but not generalize well for new 3D models. To this end we de�ne the
geometric compatibility function as a di�erential on the geometric
modality.

During training we have two images, x and xCAD , as well as
two rotation matrices, Rx and RCAD , one from the real and one
from the rendered image. We de�ne our geometric compatibility
function as:

G⇤
r el / @� = �(Rx � RCAD) . (2)

According to eq. (2) @� / �(Rx � RCAD) is a function of di�erence
between two geometries expressed by Rx and RCAD . Unfortunately,
at testing time we cannot have Rx , as this is what we are looking
for. To this end we propose to approximate the geometric compati-
bility with an approximate geometric compatibility function, which
receives as inputs the appearance features of the RGB and the CAD
rendering, namely:

G⇤
r el ⇡ Gr el / @x = f (x � xCAD) , (3)

In the spirit of [14], we de�ne the approximate geometric com-
patibility function f (·) in eq. (3) to be a separate neural network
module, which we coin geometric di�erential module. A geometric
di�erential module is implemented as a shallow convolutional neu-
ral network composed of two layers. The �rst layer is convolutional
with kernel size 1 ⇥ 1 and is fusing the activations from the two
streams. The second layer is a fully connected layer with a single
output, which approximates @�. Unlike the typical fully connected
layer which operates as a function approximator, the geometric
di�erential module approximates a function di�erential, see Fig. 3.

The geometric di�erential module does not output directly any
rotation matrices Rx nor any 3D model rendering �x . Instead, it
returns relative geometric compatibility values. They are relative,
because they are supposed to capture the di�erence of the RCAD
from Rx , and by extension the di�erence of �CAD from �x , solely
on the basis of the appearance features x and xCAD . E�ectively,
the network learns to estimate directly the matching between an
RGB image and any 3D shape rendering, avoiding to compute the
object’s rotation matrix �rst. This has two advantages.

First, the network does not directly associate the compatibility
score function in eq. (3) with the appearance of the particular ren-
derings at training time. In fact, the network does not even make
any strict assumptions regarding either the texture appearance of
the 3D shape rendering, or the geometric precision of the 3D modelFigure 2: Dataflow for searching and matching texture-free 3D shapes in images. Our main innovation is in matching the

rendered view, where we learn to match a texture-free rendering with an RGB image patch.

being that good object detectors are available [20, 22, 23]. Rele-
vant to object recognition and localization, especially for 3D shape
matching, are also the so-called amodal bounding boxes [12, 21].
Amodal boxes aim at detecting the full extent of the object, even
if the bounds of the surrounding box extent the boundaries of the
image. Amodal boxes capture the object centre location (u,v) and
corresponding scale d , also including parts that might be not vis-
ible because of occlusion or truncation. In our experiments we
quantify the sensitivity of our approach w.r.t. the quality of the
(amodal) object recognition and localization using both (perturbed)
groundtruth as well as a automatic object detection.

Searching 3D Model Once we have obtained the (fine-grained)
object category and its enclosing box, we simply query the database
of texture-free 3D shapes and forward the selected 3D shape to the
rendering stage.

Rendering Each of the 3D shapes дk can undergo various view-
point transformations and 3D-to-2D projection. The viewpoint
transformation includes rotation and translation that is controlled
by extrinsic parameters, i.e. azimuth a, elevation e , in-plane rotation
θ , camera distance d , whereas intrinsic parameters, i.e. principle off-
set (u,v), focal length f and viewportm, define the camera intrinsic
matrix for 3D-to-2D projection. We aggregate the pose transfor-
mation parameters to ϕtrainCAD = {ϕ1

CAD , ...,ϕ
M
CAD }, where M is the

number of poses seen during training. In the following, to reduce
notation clutter we drop the superscript “train” whenever it can be
derived from the context.

Following [10], the formulation of the projection matrix takes
the following form:

P =

mf 0 u

0 mf v
0 0 1

︸ ︷︷ ︸
Intrinsic Matrix

·
[
Rotation(a, e,θ)︸ ︷︷ ︸

3×3

Translation(a, e,d)︸ ︷︷ ︸
3×1

]
︸ ︷︷ ︸

Extrinsic Matrix

,

where we assume a calibrated camera, namely the focal length and
viewport are fixed to f = 1,m = 2, 000 respectively [29]. Each set of
ϕCAD values produces a new 3D model rendering. Similarly, for the

hypothetical 3D model д∗x there exists an optimal transformation
vector ϕ∗x .

Matching Rendered View Ideally, we want to avoid learning
an explicit mapping from the appearance modality to the geometric
modality. The reason is that an explicit mapping would function
well for the 3D model rendering that are observed during training
but not generalize well for new 3D models. To this end we define the
geometric compatibility function as a differential on the geometric
modality.

During training we have two images, x and xCAD , as well as
two rotation matrices, Rx and RCAD , one from the real and one
from the rendered image. We define our geometric compatibility
function as:

G∗
r el ∝ ∂ϕ = д(Rx − RCAD) . (2)

According to eq. (2) ∂ϕ ∝ д(Rx − RCAD) is a function of difference
between two geometries expressed by Rx and RCAD . Unfortunately,
at testing time we cannot have Rx , as this is what we are looking
for. To this end we propose to approximate the geometric compati-
bility with an approximate geometric compatibility function, which
receives as inputs the appearance features of the RGB and the CAD
rendering, namely:

G∗
r el ≈ Gr el ∝ ∂x = f (x − xCAD) , (3)

In the spirit of [14], we define the approximate geometric com-
patibility function f (·) in eq. (3) to be a separate neural network
module, which we coin geometric differential module. A geometric
differential module is implemented as a shallow convolutional neu-
ral network composed of two layers. The first layer is convolutional
with kernel size 1 × 1 and is fusing the activations from the two
streams. The second layer is a fully connected layer with a single
output, which approximates ∂ϕ. Unlike the typical fully connected
layer which operates as a function approximator, the geometric
differential module approximates a function differential, see Fig. 3.

The geometric differential module does not output directly any
rotation matrices Rx nor any 3D model rendering ϕx . Instead, it
returns relative geometric compatibility values. They are relative,
because they are supposed to capture the difference of the RCAD
from Rx , and by extension the difference of ϕCAD from ϕx , solely

Poster Paper Session ICMR’18, June 11-14, 2018, Yokohama, Japan

328

on the basis of the appearance features x and xCAD . Effectively,
the network learns to estimate directly the matching between an
RGB image and any 3D shape rendering, avoiding to compute the
object’s rotation matrix first. This has two advantages.

First, the network does not directly associate the compatibility
score function in eq. (3) with the appearance of the particular ren-
derings at training time. In fact, the network does not even make
any strict assumptions regarding either the texture appearance of
the 3D shape rendering, or the geometric precision of the 3D model
for the given RGB object. Thus, even if the 3D model is not a perfect
fit to the RGB object, either because the set of viewpoint was limited,
or because the geometry of the 3D model is not exactly right for the
object of interest, as in Fig. 1, the network can still predict the 3D
model parameters ϕx that match the object of interest. For instance,
assume our 3D shape library has models only of a Boeing 707 and a
Boeing 717, while our image depicts a Boeing 747. Obviously, none
of the two available shapes are perfect for our image. Nonetheless,
our network returns the best possible fit, as the matching maxi-
mizes the matching similarity with the available models, instead of
directly classifying the object appearance [2, 5, 18].

Second, since the inference returns only a compatibility score for
each provided 3D model rendering, there is no limit to the type of 3D
models permissible at test time. The proposed network can return
a compatibility score even for 3D models that were not observed
during training. As expected, the accuracy of the compatibility
score in these cases might be lower, since the network matches 3D
shapes and RGB images of object categories it has never seen. Still,
the approximate geometric compatibility function has learned how
to match at inference time on the basis of any 3D model rendering
provided at test time. Hence, in theory, the proposed network can
cope with 3D shape rendering expanded dynamically, either by
adding new 3D shapes or considering a finer discretization of the
viewpoints.

An important choice for the geometric differential module is
what distance measure it learns to imitate. Although any geometric
distance can be used, in this work we opt for approximating the ge-
odesic distance between two rotation matrices of the real object and
the rendered image respectively, R,RCAD . Namely, eq. (2) becomes

G∗
r el =

∥ log(RTx RCAD)∥2
F√

2
. (4)

Thereafter, a Euclidean loss is used to measure how accurately the
geodesic differential module predicts Gr el by relying only on the
appearance features x ,xCAD .

2.2 Learning to Match
We implement the matching of rendered views as a two-stream
architecture [24] with non-shared weights, where each stream is
a convolutional network. The first stream receives as an input the
cropped RGB images of the object of interest. The second stream re-
ceives as an input a cropped rendering from a particular texture-free
3D shape and essentially, describes the object’s candidate geometry.

For both streams we adopt the convolutional layers 1 to 5 from
AlexNet [16]. The geometric differential module is composed of a
convolutional pooling layer [7] with kernel size 1× 1, that fuses the

Geometric differential subnetwork

Grel(X, XCAD)

Rendering

𝜑cad

Euclidean loss

G*
rel

X XCAD

Figure 3: Matching a 3D model rendering to a 2D object in
an image with geometric differentials. Starting from an im-
age depicting a fine-grained object category and a texture-
free 3D shapes, we derive a 3D model rendering and learn
to match them to the localized object of interest. The net-
work is composed of two streams. The first one processes the
RGB input. The second one processes the rendered image
produced by a candidate 3D model instantiation. The feature
maps of the two inputs are fused together and then the geo-
metric differential module estimates the geodesic distance
between the two inputs based only on the appearances. It
results in a ranking of the 3D model renderings for the lo-
calized object, ideally matching the pose of the object.

two streams, followed by a fully connected module with a single
output, predicting the geometric compatibility score between the
RGB and the rendering streams. We initialize the weights for convo-
lutional layers 1-5 from AlexNet, while we initialize the remaining
layers with a Gaussian distribution with standard deviation 0.005.
The network is trained with SGD for 70000 iterations at a learning
rate of 0.0001.

Data Preparation. The first stream receives a real image as
input, while the second stream a rendered image from a 3D shape.
We first create a rendering canvas with the same size as the real
image. Given the selected 3D model and viewpoint annotation,
we render it onto canvas. This results in a rendered image and a
projected bounding box for the 3D model. We crop the real image
and rendered image with the projected bounding box to obtain the
input data for 2-stream network (see Fig. 3).

Training. During training we first sample a real image, for
which we have the ground truth 3D model instantiation. As we
want to learn to estimate the geodesic distance between different
rotation matrices, we must give good estimates for both when the
objects are close as well as far away, geometrically speaking. As our
network is a regression model, there exist no positive or negative
samples. However, to make sure that our regression model learns
to approximate accurately enough across the whole spectrum of
geodesic distances, we opt for a stratified sampling of the space of

Poster Paper Session ICMR’18, June 11-14, 2018, Yokohama, Japan

329

aeroplane01 aeroplane02 aeroplane03 aeroplane04 aeroplane05 aeroplane06 aeroplane07 aeroplane08

boat01 boat02 boat03 boat04 boat05 boat06

car01 car02 car03 car04 car05 car06 car07 car08 car09 car10

Figure 4: Texture-free 3D shapes for the 24 fine-grained aeroplane, boat, and car objects used in our experiments.

the rotation matrices to collect training examples. Specifically, per
training image we sample (i) rotation matrices that are almost equal
to the ground truth one, (ii) rotation matrices that are close enough
but not equal, (iii) as well as rotation matrices that are far from the
ground truth rotation matrix. In total, we end up with 30 rotation
matrices per object of interest in training images. We then proceed
with the training as usual, relying on SGD for backpropagation.

Inference. During inference and given one image, we traverse
over possible renderings. Namely, we render all available 3D shapes
in all desired viewpoints. We retain the most confident 3D model
instantiation, namely, the 3D shape and viewpoint, whose rendering
generates the smallest geodesic distance to the input RGB image.

3 EXPERIMENTAL SETUP
3.1 Texture-free 3D Shape Dataset
We evaluate our approach on the PASCAL3D+ dataset [29]. PAS-
CAL3D+ extends the PASCAL VOC 2012 [6] by matching to every
object location a corresponding texture-free 3D shape in its specific
pose. As the 3D shapes are category- and not instance-specific and
the size of the 3D shape library is finite, the matching quality varies
across categories. We perform our experiments on the three vehicle
categories with the most examples, namely aeroplane, boat, and car,
for which 24 texture-free shapes exist in total, see Fig. 4. While this
dataset is typically used for the problem of viewpoint estimation
[25, 28], we rely on the texture-free 3D shapes for searching and
matching. We follow the provided train/test splits. The statistics on
the image/object data used in our experiments are summarized in
Table 1.

3.2 Experiments
Experiment 1: Search and match the best rendered view given
a specific 3D shape. In our first experiment, we assume the ob-
ject is perfectly localized in the 2D image and the sub-category of
the corresponding 3D shape is known. Thus we simply need to
match the object of interest in the real image to a set of rendered
views of the corresponding shape. Naturally this is an idealized
setting, nonetheless it provides us with the opportunity to establish
an upper-bound for our matching network to compare against in
follow-up experiments.

Experiment 2: Search and match the best rendered view
among a collection of 3D shapes. Although fine-grained object
recognition approaches, e.g. [19], can be used for 3D shape selection
directly, the matching module of our system should also be able
to do this. In this experiment we study the performance of our
system doing 3D shape search and rendered view matching at the
same time. To be more specific, given a test object of interest in
a 2D image, we only know the super category it belongs to (e.g.
aeroplane), but without knowledge of whether it is an airliner or
jet fighter. Hence, for each test object of interest, we have to match
it with respect to all possible rendered views and all available fine-
grained sub-category 3D shapes. This potentially add difficulties to
our approach in distinguishing the best match especially when a
few 3D shape candidates are of similar shape (e.g. car01, car02 and
car05 in Fig. 4).

Experiment 3: Search and match the best rendered view
from unseen 3D shapes Despite the discrepancy amongst 3D
shapes under each category in experiment 1 and 2, all of them are
seen both at training and test time. Thus, one interesting question
is whether our approach is able to find and match unseen 3D shapes
within one super category. Specifically, we consider using only half
of the three super categories, aeroplane, boat and car, for training. At
test time, we apply the trained network on an unseen sub-category
to study whether our network is able to transfer the knowledge
from the set of seen sub-categories. Note that, as an ablation study,
we continue the setting from experiment 1, where location and
scale of the 2D object is known.

Experiment 4: Search and match the best rendered view
when object location and scale are imperfect.

In this experiment, we investigate how much localization noise
our system can tolerate. We first study imperfect object location
and scale separately. To simulate the object location error, we per-
turb the ground truth annotation (u,v) by adding random noise
(∆u,∆v) proportional to the size of ground truth amodal bounding
box (width, height). We further evaluate inaccurate detection of
object scale in terms of the camera distance d , by randomly scal-
ing it down/up to a maximum of {80%, 90%, 100%, 110%, 120%} of
the original value. This results in the 3D shape being rendered
smaller/bigger than the object in the real image. Note that scaling
down camera distance d means bringing an object closer to the
camera and thus a larger amodal bounding box on the 2D space.

Poster Paper Session ICMR’18, June 11-14, 2018, Yokohama, Japan

330

In the third sub-experiment, we perturb (u,v) and d at the same
time, keeping the noise of (∆u,∆v) at a level of 10% , while ran-
domly varying the scale d to {90%, 100%, 110%} of the original. Note
that the fine-grained shape is given in this experiment for a better
understanding of the effect of noise on our system.

Experiment 5: Search engine comparison. In our last experi-
ment, we compare our system with Choy et al. [5]. The comparisons
are conducted with two settings: (1) search and match given the
ground truth object location and (2) fully automatic search and
match. As an object detector returns the bounding box coordinates,
but not the full object extent in terms of principle point u,v and
distance d , we simply choose the center of the bounding box pro-
vided by [20] and a scale value d that best matches the bounding
box. In contrast, [5] relies on the detected bounding box and a local
search is conducted with a multi-scaled detector template. For a
fair comparison with [5], we run their software on our rendered
images from the 24 texture-free 3D shapes and train both methods
in the same way.

3.3 Evaluation Criteria
To test the searching and matching accuracy of our network, we
first discretize the rotation parameter space of azimuth a, elevation
e and in-plane rotation θ uniformly into 21, 11, 11 bins respectively.
This results in 2,541 rendering views in total. At test time we re-
port results when considering the ground truth rendering as well,
resulting in 2,542 rendering views and thus 2,542 predictions of the
matching score. We report the precision@5, namely a prediction
is correct if it contains the ground truth 3D shape in the top-5
ranked positions. On top of the alignment precision at 5 we also
measure the amodal intersection over union (AIOU), see Fig. 5, to
quantify the shape disagreement given a 2D object of interest and a
3D shape. To compute the AIOU we measure the intersection over
union overlap between the 2D ground truth bounding box and the
amodal bounding box[12] derived by the optimal 3D shape from
the annotators. A perfectly fitting 3D shape will have very high
IOU with the 2D box, while a poor fitting 3D shape will return a
very different amodal bounding box and thus low AIOU. We also
report the mean over all test queries, indicated by Query Mean.

For the comparison with Choy et al. [5], we follow their setup and
report accuracy at θ (ACC@θ) when the ground truth bounding box
is given. This metric evaluates the fraction of viewpoint predictions
that are within a fixed threshold (θ) of its ground truth. When
incorporating automatic objection detection, we report Average
Viewpoint Precision (AVP) for evaluation. It is similar to Average
Precision (AP) in object detection, but it only counts detections
as correct when the bounding box overlap ratio exceeds 0.5 and
when the prediction of the discretized azimuth angle is in the right
bin. We report performance on different levels of azimuth angle
discretization, {4,8,16,24} bins. As discretization goes finer, the more
difficult this task becomes.

4 RESULTS
4.1 Search and match specific 3D shape
We present the matching accuracy and AIOU results in Table 1.
Cars are matched the best, as cars generally have a simple box-
like shape. In contrast, boats are more challenging . For one, boats

exhibit large variation in shape and object size/scale: a boat includes
sub-categories from tanker to canoes, see Fig. 4. Moreover, for boats
occlusion exists naturally since half of the boat is almost always
underwater, thus confusing the matching network that expects the
object to be fully visible. When excluding the ground truth pose
from the rendered view search space, the precision@5 drops from
0.64 to 0.48 for aeroplanes, from 0.44 to 0.27 for boats and from
0.75 to 0.68 for cars. In this scenario, a poor-fitted amodal bounding
box hurts even more. To decouple the matching from the rendered
view search strategy, we include the ground truth rendering in the
rendering search space in the remaining experiments.

When considering individual sub-categories we observe that
apart from having a sufficient number of examples available for
training, the consistency in shape appearance is important. For ex-
ample, boat03 is relatively hard. This is due to the fact that sailing
boats can have large shape variance and the sail may have different
orientation from its body. In contrast, boat04 and boat06 are rela-
tively easy because both of them are big ships resembling a 3D box
floating on the water, which facilitates the matching. Similar ob-
servations hold for airplanes. Cars generally have more consistent
accuracy. Interesting cases are car07 and car04, with car07 being
better matched than car04 despite having fewer training samples.
The reason is the frontal and rear view of car07 are quite distin-
guishable, whereas car04 looks like a box, with front and rear poses
being often confused.

4.2 Search and match among 3D shapes
We show results in Table. 2. When the fine-grained sub-category of
the object is unknown the network must iterate over all possible 3D
shapes. This amounts to an N -fold increase of possible 3D shape
instantiations, where N is the number of possible sub-categories.
Despite this N -fold increase, we observe that the matching network
accuracy drops only 2-fold, approximately. As a reference, a ran-
dom baseline is about 2 · 10−4 for aeroplanes, where our matching
network scores 0.32. Loosely inspired by the work of Junkert et
al. [11], intended for textured renderings, we also report a base-
line based on a nearest neighbor search strategy. Specifically, we

Figure 5: 2D annotation bounding box (dashed blue) vs
amodal bounding box (solid green). The difference of the
two bounding boxes indicates the shape disagreement be-
tween a 3D model to the 2D object in image. For the car
the two boxes align almost perfectly, while for the sailing
boat there is a noticeable discrepancy. In general, in the PAS-
CAL3D+ dataset, the 3D shapes of cars have the best agree-
ment with the 2D object in an image, while boats have the
worst. We show statistics of the amodal intersection over
union (AIOU) in Table 1.

Poster Paper Session ICMR’18, June 11-14, 2018, Yokohama, Japan

331

Table 1: Experiment 1: Search and match the best rendered view given a specific 3D shape. Note the correlation between
precision at 5 and quality of the amodal bounding box per category measured by AIOU.

aeroplane boat car

Subtype #Train #Queries AIOU p@5 Subtype #Train #Queries AIOU p@5 Subtype #Train #Queries AIOU p@5
aeroplane01 761 128 0.80 0.73 boat01 572 123 0.60 0.51 car01 696 97 0.84 0.78
aeroplane02 105 0 0.81 - boat02 363 24 0.73 0.25 car02 729 37 0.87 0.73
aeroplane03 80 11 0.75 0.36 boat03 519 46 0.68 0.22 car03 932 35 0.87 0.63
aeroplane04 82 26 0.75 0.50 boat04 530 16 0.78 0.62 car04 141 24 0.82 0.54
aeroplane05 88 45 0.76 0.64 boat05 40 11 0.66 0.55 car05 139 17 0.82 0.76
aeroplane06 478 44 0.76 0.50 boat06 492 12 0.69 0.58 car06 1261 18 0.85 0.83
aeroplane07 392 21 0.73 0.62 car07 137 5 0.79 1.00
aeroplane08 88 0 0.80 - car08 107 8 0.83 0.75

car09 884 42 0.82 0.98
car10 641 25 0.86 0.56

Query Mean 0.78 0.64 Query Mean 0.69 0.44 Query Mean 0.85 0.75

Figure 6: Experiment 4: Search and match the best rendered view when object location (u,v) and d scale are imperfect. On the
x axis we visualize the indicative overlap displacement with respect to the perfect box. For moderate noise (5-10%) the model
recovers a good match.

extract fc7 features of a pre-trained AlexNet [16] from the object
of interest in both the real and rendered images with K = 2, 542
different viewpoints, and rank them based on cosine similarity. The
results show this approach does not work well in our setting, with
p@5 around 0.07, as the domain shift from real images to rendered
images without texture and background context is simply too large.

4.3 Search and match unseen 3D shapes
We report the performance of our network trained on both seen and
unseen sub-categories in Table 3. The network is able to transfer
its matching knowledge to unseen shapes to some extent. Note
that this experimental setting is quite close to zero-shot image
classification [15] where one classifies a category without hav-
ing seen its visual examples, a challenging task where accuracy
drops are generally high. Focusing on sub-categories, aeroplane05
is matched best, while aeroplane06 is affected more. Likely because
aeroplane05 looks similar to both aeroplane01 and aeroplane02,
while aeroplane06 (jet fighter) is more different. Similarly, boat05
is well matched because it resembles boat02. However, boat04 and
boat06 refer to big ships, and transferring the matching knowledge
from the considerably smaller boats (yachts, canoes and sailing
boats) is harder. For cars, where all sub-categories are quite similar

Table 2: Experiment 2: Search and match the best rendered
view among a collection of 3D shapes. Per super-category,
we go over all N 3D shapes per sub-category, namely N ·2, 542
3D shape hypotheses. Matching is feasible even when the
sub-categories are unknown (compare with Table 1).

aeroplane boat car

Subtype p@5 Subtype p@5 Subtype p@5
aeroplane01 0.35 boat01 0.15 car01 0.46
aeroplane02 - boat02 0.00 car02 0.27
aeroplane03 0.27 boat03 0.22 car03 0.23
aeroplane04 0.31 boat04 0.44 car04 0.08
aeroplane05 0.24 boat05 0.09 car05 0.35
aeroplane06 0.34 boat06 0.42 car06 0.28
aeroplane07 0.33 car07 0.40
aeroplane08 - car08 0.25

car09 0.69
car10 0.16

Query Mean 0.32 Query Mean 0.18 Query Mean 0.37

we observe a good matching accuracy. We conclude that if new 3D

Poster Paper Session ICMR’18, June 11-14, 2018, Yokohama, Japan

332

Table 3: Experiment 3: Search and match the best rendered
view from unseen 3D shapes. Intra-category knowledge
transfer can be performed when new 3D shapes added at test
time are somewhat similar to the ones seen during training
(marked in gray).

aeroplane boat car

Subtype p@5 Subtype p@5 Subtype p@5
aeroplane01 0.67 boat01 0.43 car01 0.85
aeroplane02 - boat02 0.29 car02 0.84
aeroplane03 0.45 boat03 0.37 car03 0.57
aeroplane04 0.62 car04 0.62

car05 0.71
aeroplane05 0.40 boat04 0.06 car06 0.61
aeroplane06 0.14 boat05 0.55 car07 1.00
aeroplane07 0.33 boat06 0.00 car08 0.25
aeroplane08 - car09 0.88

car10 0.44

shapes added at test time are somewhat similar to the seen ones,
our network can match them reasonably well.

4.4 Search and match under noisy conditions
Noisy object location. We first look at the effect of noise on the
object location (u,v), see Fig. 6 (A). For a limited amount of 5%
noise the impact on the network is modest, when averaged over
categories the loss is 0.59 for aeroplane, 0.41 for boat and 0.73 for
car. When we add more noise performance starts to suffer, with
10% noise the numbers drop to 0.52, 0.32 and 0.59 respectively.
Unsurprisingly the performance drops as more and more noise is
added, be it that the drop is less pronounced after 20%.

Noisy object scale. Next, we investigate the sensitivity when
adding noise to the camera distance d , which relates to the detected
object scale (smaller d → larger object scale), see Fig. 6 (B). As
before, the larger the deviation the larger the drop in performance
and any noise in the range ±10% leads to an acceptable matching
accuracy. Interestingly, when scaling d down to 90% it leads to a
slight increase in performance for boats. The reason is that scaling
down the camera distance d results in a bigger amodal bounding
box that often is a better fit to the actual object.

Noisy object location and scale. Last, we assess the impact of
having noise in both the location and the scale. Results are shown in
Fig. 6 (C). We observe the accuracy remains stable for all categories,
indicating the two different types of noise do not reinforce each
other too much.

4.5 Search engine comparison
Results for given ground truth object location are shown in Table
4. In terms of the mean over all queries, we obtain better ACC@θ
than [5] for all 3 categories. The boat category has relatively low
performance for both methods, because of the low AIOU rate (see
Table 1) that indicates large shape discrepancies. Looking into the
sub-category comparisons, Choy et al. is better in some cases (e.g.
aeroplane03, aeroplane04, boat02-boat06), mostly when less train-
ing examples are provided which results in our two-stream network
being underfitting. Table 5 reports results of joint object detection
and 3D-to-2D matching. In terms of AVP we outperform Choy et

Table 4: Experiment 5: Search engine comparison with Choy
et al. [5] using ground truth object location, where we run
the software of Choy et al. on our texture-free setting. In
terms ofACC@θ our approach is especially beneficial for 3D
shapes that have sufficient training samples, where Choy et
al. profit from limited example regimes (see Table 1). For
boats both approaches perform modestly.

aeroplane boat car
Subtype Choy et al. This paper Subtype Choy et al. This paper Subtype Choy et al. This paper
aero01 0.48 0.59 boat01 0.32 0.36 car01 0.39 0.62
aero02 - - boat02 0.48 0.21 car02 0.62 0.60
aero03 0.55 0.46 boat03 0.33 0.26 car03 0.54 0.57
aero04 0.39 0.31 boat04 0.19 0.19 car04 0.42 0.50
aero05 0.40 0.56 boat05 0.50 0.09 car05 0.35 0.71
aero06 0.39 0.57 boat06 0.42 0.25 car06 0.83 0.61
aero07 0.33 0.52 car07 0.40 0.80
aero08 - - car08 0.63 0.50

car09 0.76 0.74
car10 0.60 0.48

Query Mean 0.35 0.54 Query Mean 0.22 0.29 Query Mean 0.29 0.61

Table 5: Experiment 5: Search engine comparison with Choy
et al. [5] with automatically detected object location, using
their public software on our texture-free setting. The pro-
posed system achieves better performance in terms of AVP
for aeroplane and car and worse for boat.

aeroplane boat car
#Bins 4 8 16 24 4 8 16 24 4 8 16 24
Choy et al. 0.35 0.22 0.10 0.05 0.14 0.06 0.02 0.01 0.23 0.17 0.10 0.07
This paper 0.44 0.24 0.10 0.05 0.07 0.04 0.01 0.01 0.30 0.26 0.19 0.11

al. also in this setting. As expected, performance for both search
engines suffers when azimuth angle discretization becomes finer.
While aeroplanes and cars are again matched better, now aeroplane
are easier to match than cars, presumably due to their easier detec-
tion of typically simpler backgrounds. We conclude that our system
with a learned matching function is beneficial over hand-engineered
feature matching approaches when sufficient (>80) training samples
are available. At the same time there is still a lot of work needed
before we arrive at generic and precise searching and matching of
3D shapes in images.

5 CONCLUSION
This paper focuses on searching and matching the best rendered
view of a texture-free 3D shape to an object of interest in a 2D
image. Matching rendered views of 3D shapes to RGB images is
challenging because of imperfect 3D shapes and domain shift in
appearance due to texture mismatch. We propose a deeply learned
matching function that attacks these challenges and can be used
as a search engine of 3D shapes to objects in 2D. We evaluate the
proposed search engine on the most populated PASCAL3D+ vehicle
categories, testing the capabilities of transferring the learnt function
to unseen 3D shapes and its sensitivity to imperfect 3D shapes and
localization. We also identify the need for accurate amodal bounding
box detection in 2D images as an important 3D-to-2D matching
topic for further investigation.

Poster Paper Session ICMR’18, June 11-14, 2018, Yokohama, Japan

333

REFERENCES
[1] Jurgen Assfalg, Alberto Del Bimbo, and Pietro Pala. 2004. Retrieval of 3D Objects

by Visual Similarity. In MIR.
[2] Mathieu Aubry, Daniel Maturana, Alexei Efros, Bryan Russell, and Josef Sivic.

2014. Seeing 3D chairs: exemplar part-based 2D-3D alignment using a large
dataset of CAD models. In CVPR.

[3] Aayush Bansal, Bryan Russell, and Abhinav Gupta. 2016. Marr Revisited: 2D-3D
Alignment via Surface Normal Prediction. In CVPR.

[4] Angel X. Chang, Thomas A. Funkhouser, Leonidas J. Guibas, Pat Hanrahan,
Qi-Xing Huang, Zimo Li, Silvio Savarese, Manolis Savva, Shuran Song, Hao Su,
Jianxiong Xiao, Li Yi, and Fisher Yu. 2015. ShapeNet: An Information-Rich 3D
Model Repository. CoRR (2015).

[5] Christopher Bongsoo Choy, Michael Stark, Sam Corbett-Davies, and Silvio
Savarese. 2015. Enriching Object Detection with 2D-3D Registration and Contin-
uous Viewpoint Estimation. In CVPR.

[6] Mark Everingham, SM Ali Eslami, Luc Van Gool, Christopher KI Williams, John
Winn, and Andrew Zisserman. 2015. The pascal visual object classes challenge:
A retrospective. IJCV 111, 1 (2015), 98–136.

[7] Christoph Feichtenhofer, Axel Pinz, and Andrew Zisserman. 2016. Convolutional
two-stream network fusion for video action recognition. In CVPR.

[8] Thomas Funkhouser, Patrick Min, Michael Kazhdan, Joyce Chen, Alex Halderman,
David Dobkin, and David Jacobs. 2003. A Search Engine for 3D Models. ACM
Trans. Graph. 22, 1 (2003), 83–105.

[9] Saurabh Gupta, Pablo Arbelaez, Ross Girshick, and Jitendra Malik. 2015. Aligning
3D models to RGB-D images of cluttered scenes. In CVPR.

[10] Richard Hartley and Andrew Zisserman. 2003. Multiple View Geometry in Com-
puter Vision (2 ed.). Cambridge University Press, New York, NY, USA.

[11] Fabian Junkert, Markus Eberts, Adrian Ulges, and Ulrich Schwanecke. 2017.
Cross-modal Image-Graphics Retrieval by Neural Transfer Learning. In ICMR.
330–337.

[12] Abhishek Kar, Shubham Tulsiani, Joao Carreira, and Jitendra Malik. 2015. Amodal
completion and size constancy in natural scenes. In ICCV.

[13] Toshikazu Kato, Takio Kurita, Nobuyuki Otsu, and Kyoji Hirata. 1992. A sketch
retrieval method for full color image database-query by visual example. In ICPR.
IEEE, 530–533.

[14] Diederik P. Kingma and Max Welling. 2014. Auto-Encoding Variational Bayes. In
ICLR.

[15] Svetlana Kordumova, Thomas Mensink, and Cees G. M. Snoek. 2016. Pooling
Objects for Recognizing Scenes without Examples. In ICMR.

[16] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. ImageNet Classifi-
cation with Deep Convolutional Neural Networks. In NIPS.

[17] Michael S Lew, Nicu Sebe, Chabane Djeraba, and Ramesh Jain. 2006. Content-
based multimedia information retrieval: State of the art and challenges. ACM
TOMCCAP 2, 1 (2006), 1–19.

[18] Joseph J Lim, Aditya Khosla, and Antonio Torralba. 2014. FPM: Fine pose parts-
based model with 3d cad models. In ECCV.

[19] Tsung-Yu Lin, Aruni RoyChowdhury, and Subhransu Maji. 2015. Bilinear cnn
models for fine-grained visual recognition. In ICCV.

[20] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed,
Cheng-Yang Fu, and Alexander C Berg. 2016. Ssd: Single shot multibox detector.
In ECCV.

[21] Arsalan Mousavian, Dragomir Anguelov, John Flynn, and Jana Kosecka. 2016.
3D Bounding Box Estimation Using Deep Learning and Geometry. arXiv preprint
arXiv:1612.00496 (2016).

[22] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. 2016. You only
look once: Unified, real-time object detection. In CVPR.

[23] Shaoqing Ren, Kaiming He, and Ross Girshick. 2015. Faster R-CNN_ Towards
Real-Time Object Detection with Region Proposal Networks. In NIPS.

[24] Karen Simonyan and Andrew Zisserman. 2014. Two-stream Convolutional
Networks for Action Recognition in Videos. In NIPS.

[25] Hao Su, Charles R Qi, Yangyan Li, and Leonidas J Guibas. 2015. Render for cnn:
Viewpoint estimation in images using cnns trained with rendered 3d model views.
In ICCV.

[26] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, Andrew Rabinovich, et al. 2015.
Going deeper with convolutions. In CVPR.

[27] Johan W. H. Tangelder and Remco C. Veltkamp. 2007. A survey of content based
3D shape retrieval methods. MTAP 39, 3 (2007), 441.

[28] Shubham Tulsiani and Jitendra Malik. 2015. Viewpoints and Keypoints. In CVPR.
[29] Yu Xiang, Roozbeh Mottaghi, and Silvio Savarese. 2014. Beyond PASCAL: A

Benchmark for 3D Object Detection in the Wild. In WACV.

Poster Paper Session ICMR’18, June 11-14, 2018, Yokohama, Japan

334

	Abstract
	1 Introduction
	1.1 Related Work
	1.2 Contributions

	2 Towards a 3D-to-2D Search Engine
	2.1 Searching and Matching 3D Shapes
	2.2 Learning to Match

	3 Experimental Setup
	3.1 Texture-free 3D Shape Dataset
	3.2 Experiments
	3.3 Evaluation Criteria

	4 Results
	4.1 Search and match specific 3D shape
	4.2 Search and match among 3D shapes
	4.3 Search and match unseen 3D shapes
	4.4 Search and match under noisy conditions
	4.5 Search engine comparison

	5 Conclusion
	References

